Towards a Theory of Domains for Harmonic Functions and its Symbolic Counterpart

In this paper, we begin by reviewing the calculus induced by the framework of [ 10 ]. In there, we extended Polylogarithm functions over a subalgebra of noncommutative rational power series, recognizable by finite state (multiplicity) automata over the alphabet X = { x 0 , x 1 } . The stability of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics in computer science 2023-03, Vol.17 (1), Article 4
Hauptverfasser: Chien, Bui Van, Duchamp, Gérard H. E., Hoan, Ngo Quoc, Vincel, Hoang Ngoc Minh, Vu, Nguyen Dinh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Mathematics in computer science
container_volume 17
creator Chien, Bui Van
Duchamp, Gérard H. E.
Hoan, Ngo Quoc
Vincel, Hoang Ngoc Minh
Vu, Nguyen Dinh
description In this paper, we begin by reviewing the calculus induced by the framework of [ 10 ]. In there, we extended Polylogarithm functions over a subalgebra of noncommutative rational power series, recognizable by finite state (multiplicity) automata over the alphabet X = { x 0 , x 1 } . The stability of this calculus under shuffle products relies on the nuclearity of the target space [ 32 ]. We also concentrated on algebraic and analytic aspects of this extension allowing to index polylogarithms, at non positive multi-indices, by rational series and also allowing to regularize divergent polyzetas, at non positive multi-indices [ 10 ]. As a continuation of works in [ 10 ] and in order to understand the bridge between the extension of this “polylogarithmic calculus” and the world of harmonic sums, we propose a local theory, adapted to a full calculus on indices of Harmonic Sums based on the Taylor expansions, around zero, of polylogarithms with index x 1 on the rightmost end. This theory is not only compatible with Stuffle products but also with the Analytic Model. In this respect, it provides a stable and fully algorithmic model for Harmonic calculus. Examples by computer are also provided.
doi_str_mv 10.1007/s11786-022-00552-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2775251755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2775251755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-3ce888cb28c95b9a82268d8ed4415ec5c0cb70f9cd6188df9284c292c87b8f6a3</originalsourceid><addsrcrecordid>eNp9kM9LwzAUx4MoOKf_gKeA52iSNsnrUaZzwmAH6zmkaaIdazOTFtl_b2dFb57e473vD_ggdM3oLaNU3SXGFEhCOSeUCsGJOEEzJiUjwKE4_d0VPUcXKW0plZzlbIY2Zfg0sU7Y4PLdhXjAweOH0JqmS9iHiFcmtqFrLF4One2bMJ5NV-OmT_jl0FZhN74WYeh6F_cm9pfozJtdclc_c45el4_lYkXWm6fnxf2a2ExmPcmsAwBbcbCFqAoDnEuowdV5zoSzwlJbKeoLW0sGUPuCQ255wS2oCrw02RzdTLn7GD4Gl3q9DUPsxkrNlRJcMCXEqOKTysaQUnRe72PTmnjQjOojOD2B0yM4_Q1OH03ZZEqjuHtz8S_6H9cXXiJwmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2775251755</pqid></control><display><type>article</type><title>Towards a Theory of Domains for Harmonic Functions and its Symbolic Counterpart</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chien, Bui Van ; Duchamp, Gérard H. E. ; Hoan, Ngo Quoc ; Vincel, Hoang Ngoc Minh ; Vu, Nguyen Dinh</creator><creatorcontrib>Chien, Bui Van ; Duchamp, Gérard H. E. ; Hoan, Ngo Quoc ; Vincel, Hoang Ngoc Minh ; Vu, Nguyen Dinh</creatorcontrib><description>In this paper, we begin by reviewing the calculus induced by the framework of [ 10 ]. In there, we extended Polylogarithm functions over a subalgebra of noncommutative rational power series, recognizable by finite state (multiplicity) automata over the alphabet X = { x 0 , x 1 } . The stability of this calculus under shuffle products relies on the nuclearity of the target space [ 32 ]. We also concentrated on algebraic and analytic aspects of this extension allowing to index polylogarithms, at non positive multi-indices, by rational series and also allowing to regularize divergent polyzetas, at non positive multi-indices [ 10 ]. As a continuation of works in [ 10 ] and in order to understand the bridge between the extension of this “polylogarithmic calculus” and the world of harmonic sums, we propose a local theory, adapted to a full calculus on indices of Harmonic Sums based on the Taylor expansions, around zero, of polylogarithms with index x 1 on the rightmost end. This theory is not only compatible with Stuffle products but also with the Analytic Model. In this respect, it provides a stable and fully algorithmic model for Harmonic calculus. Examples by computer are also provided.</description><identifier>ISSN: 1661-8270</identifier><identifier>EISSN: 1661-8289</identifier><identifier>DOI: 10.1007/s11786-022-00552-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Automata theory ; Calculus ; Computer Science ; Harmonic functions ; Mathematical analysis ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Power series ; Series (mathematics) ; Sums</subject><ispartof>Mathematics in computer science, 2023-03, Vol.17 (1), Article 4</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-3ce888cb28c95b9a82268d8ed4415ec5c0cb70f9cd6188df9284c292c87b8f6a3</citedby><cites>FETCH-LOGICAL-c363t-3ce888cb28c95b9a82268d8ed4415ec5c0cb70f9cd6188df9284c292c87b8f6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11786-022-00552-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11786-022-00552-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Chien, Bui Van</creatorcontrib><creatorcontrib>Duchamp, Gérard H. E.</creatorcontrib><creatorcontrib>Hoan, Ngo Quoc</creatorcontrib><creatorcontrib>Vincel, Hoang Ngoc Minh</creatorcontrib><creatorcontrib>Vu, Nguyen Dinh</creatorcontrib><title>Towards a Theory of Domains for Harmonic Functions and its Symbolic Counterpart</title><title>Mathematics in computer science</title><addtitle>Math.Comput.Sci</addtitle><description>In this paper, we begin by reviewing the calculus induced by the framework of [ 10 ]. In there, we extended Polylogarithm functions over a subalgebra of noncommutative rational power series, recognizable by finite state (multiplicity) automata over the alphabet X = { x 0 , x 1 } . The stability of this calculus under shuffle products relies on the nuclearity of the target space [ 32 ]. We also concentrated on algebraic and analytic aspects of this extension allowing to index polylogarithms, at non positive multi-indices, by rational series and also allowing to regularize divergent polyzetas, at non positive multi-indices [ 10 ]. As a continuation of works in [ 10 ] and in order to understand the bridge between the extension of this “polylogarithmic calculus” and the world of harmonic sums, we propose a local theory, adapted to a full calculus on indices of Harmonic Sums based on the Taylor expansions, around zero, of polylogarithms with index x 1 on the rightmost end. This theory is not only compatible with Stuffle products but also with the Analytic Model. In this respect, it provides a stable and fully algorithmic model for Harmonic calculus. Examples by computer are also provided.</description><subject>Automata theory</subject><subject>Calculus</subject><subject>Computer Science</subject><subject>Harmonic functions</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Power series</subject><subject>Series (mathematics)</subject><subject>Sums</subject><issn>1661-8270</issn><issn>1661-8289</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAUx4MoOKf_gKeA52iSNsnrUaZzwmAH6zmkaaIdazOTFtl_b2dFb57e473vD_ggdM3oLaNU3SXGFEhCOSeUCsGJOEEzJiUjwKE4_d0VPUcXKW0plZzlbIY2Zfg0sU7Y4PLdhXjAweOH0JqmS9iHiFcmtqFrLF4One2bMJ5NV-OmT_jl0FZhN74WYeh6F_cm9pfozJtdclc_c45el4_lYkXWm6fnxf2a2ExmPcmsAwBbcbCFqAoDnEuowdV5zoSzwlJbKeoLW0sGUPuCQ255wS2oCrw02RzdTLn7GD4Gl3q9DUPsxkrNlRJcMCXEqOKTysaQUnRe72PTmnjQjOojOD2B0yM4_Q1OH03ZZEqjuHtz8S_6H9cXXiJwmQ</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Chien, Bui Van</creator><creator>Duchamp, Gérard H. E.</creator><creator>Hoan, Ngo Quoc</creator><creator>Vincel, Hoang Ngoc Minh</creator><creator>Vu, Nguyen Dinh</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230301</creationdate><title>Towards a Theory of Domains for Harmonic Functions and its Symbolic Counterpart</title><author>Chien, Bui Van ; Duchamp, Gérard H. E. ; Hoan, Ngo Quoc ; Vincel, Hoang Ngoc Minh ; Vu, Nguyen Dinh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-3ce888cb28c95b9a82268d8ed4415ec5c0cb70f9cd6188df9284c292c87b8f6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Automata theory</topic><topic>Calculus</topic><topic>Computer Science</topic><topic>Harmonic functions</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Power series</topic><topic>Series (mathematics)</topic><topic>Sums</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chien, Bui Van</creatorcontrib><creatorcontrib>Duchamp, Gérard H. E.</creatorcontrib><creatorcontrib>Hoan, Ngo Quoc</creatorcontrib><creatorcontrib>Vincel, Hoang Ngoc Minh</creatorcontrib><creatorcontrib>Vu, Nguyen Dinh</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematics in computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chien, Bui Van</au><au>Duchamp, Gérard H. E.</au><au>Hoan, Ngo Quoc</au><au>Vincel, Hoang Ngoc Minh</au><au>Vu, Nguyen Dinh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards a Theory of Domains for Harmonic Functions and its Symbolic Counterpart</atitle><jtitle>Mathematics in computer science</jtitle><stitle>Math.Comput.Sci</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>17</volume><issue>1</issue><artnum>4</artnum><issn>1661-8270</issn><eissn>1661-8289</eissn><abstract>In this paper, we begin by reviewing the calculus induced by the framework of [ 10 ]. In there, we extended Polylogarithm functions over a subalgebra of noncommutative rational power series, recognizable by finite state (multiplicity) automata over the alphabet X = { x 0 , x 1 } . The stability of this calculus under shuffle products relies on the nuclearity of the target space [ 32 ]. We also concentrated on algebraic and analytic aspects of this extension allowing to index polylogarithms, at non positive multi-indices, by rational series and also allowing to regularize divergent polyzetas, at non positive multi-indices [ 10 ]. As a continuation of works in [ 10 ] and in order to understand the bridge between the extension of this “polylogarithmic calculus” and the world of harmonic sums, we propose a local theory, adapted to a full calculus on indices of Harmonic Sums based on the Taylor expansions, around zero, of polylogarithms with index x 1 on the rightmost end. This theory is not only compatible with Stuffle products but also with the Analytic Model. In this respect, it provides a stable and fully algorithmic model for Harmonic calculus. Examples by computer are also provided.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11786-022-00552-5</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1661-8270
ispartof Mathematics in computer science, 2023-03, Vol.17 (1), Article 4
issn 1661-8270
1661-8289
language eng
recordid cdi_proquest_journals_2775251755
source SpringerLink Journals - AutoHoldings
subjects Automata theory
Calculus
Computer Science
Harmonic functions
Mathematical analysis
Mathematical models
Mathematics
Mathematics and Statistics
Power series
Series (mathematics)
Sums
title Towards a Theory of Domains for Harmonic Functions and its Symbolic Counterpart
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A36%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20a%20Theory%20of%20Domains%20for%20Harmonic%20Functions%20and%20its%20Symbolic%20Counterpart&rft.jtitle=Mathematics%20in%20computer%20science&rft.au=Chien,%20Bui%20Van&rft.date=2023-03-01&rft.volume=17&rft.issue=1&rft.artnum=4&rft.issn=1661-8270&rft.eissn=1661-8289&rft_id=info:doi/10.1007/s11786-022-00552-5&rft_dat=%3Cproquest_cross%3E2775251755%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2775251755&rft_id=info:pmid/&rfr_iscdi=true