Towards a Theory of Domains for Harmonic Functions and its Symbolic Counterpart
In this paper, we begin by reviewing the calculus induced by the framework of [ 10 ]. In there, we extended Polylogarithm functions over a subalgebra of noncommutative rational power series, recognizable by finite state (multiplicity) automata over the alphabet X = { x 0 , x 1 } . The stability of t...
Gespeichert in:
Veröffentlicht in: | Mathematics in computer science 2023-03, Vol.17 (1), Article 4 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Mathematics in computer science |
container_volume | 17 |
creator | Chien, Bui Van Duchamp, Gérard H. E. Hoan, Ngo Quoc Vincel, Hoang Ngoc Minh Vu, Nguyen Dinh |
description | In this paper, we begin by reviewing the calculus induced by the framework of [
10
]. In there, we extended Polylogarithm functions over a subalgebra of noncommutative rational power series, recognizable by finite state (multiplicity) automata over the alphabet
X
=
{
x
0
,
x
1
}
. The stability of this calculus under shuffle products relies on the nuclearity of the target space [
32
]. We also concentrated on algebraic and analytic aspects of this extension allowing to index polylogarithms, at non positive multi-indices, by rational series and also allowing to regularize divergent polyzetas, at non positive multi-indices [
10
]. As a continuation of works in [
10
] and in order to understand the bridge between the extension of this “polylogarithmic calculus” and the world of harmonic sums, we propose a local theory, adapted to a full calculus on indices of Harmonic Sums based on the Taylor expansions, around zero, of polylogarithms with index
x
1
on the rightmost end. This theory is not only compatible with Stuffle products but also with the Analytic Model. In this respect, it provides a stable and fully algorithmic model for Harmonic calculus. Examples by computer are also provided. |
doi_str_mv | 10.1007/s11786-022-00552-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2775251755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2775251755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-3ce888cb28c95b9a82268d8ed4415ec5c0cb70f9cd6188df9284c292c87b8f6a3</originalsourceid><addsrcrecordid>eNp9kM9LwzAUx4MoOKf_gKeA52iSNsnrUaZzwmAH6zmkaaIdazOTFtl_b2dFb57e473vD_ggdM3oLaNU3SXGFEhCOSeUCsGJOEEzJiUjwKE4_d0VPUcXKW0plZzlbIY2Zfg0sU7Y4PLdhXjAweOH0JqmS9iHiFcmtqFrLF4One2bMJ5NV-OmT_jl0FZhN74WYeh6F_cm9pfozJtdclc_c45el4_lYkXWm6fnxf2a2ExmPcmsAwBbcbCFqAoDnEuowdV5zoSzwlJbKeoLW0sGUPuCQ255wS2oCrw02RzdTLn7GD4Gl3q9DUPsxkrNlRJcMCXEqOKTysaQUnRe72PTmnjQjOojOD2B0yM4_Q1OH03ZZEqjuHtz8S_6H9cXXiJwmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2775251755</pqid></control><display><type>article</type><title>Towards a Theory of Domains for Harmonic Functions and its Symbolic Counterpart</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chien, Bui Van ; Duchamp, Gérard H. E. ; Hoan, Ngo Quoc ; Vincel, Hoang Ngoc Minh ; Vu, Nguyen Dinh</creator><creatorcontrib>Chien, Bui Van ; Duchamp, Gérard H. E. ; Hoan, Ngo Quoc ; Vincel, Hoang Ngoc Minh ; Vu, Nguyen Dinh</creatorcontrib><description>In this paper, we begin by reviewing the calculus induced by the framework of [
10
]. In there, we extended Polylogarithm functions over a subalgebra of noncommutative rational power series, recognizable by finite state (multiplicity) automata over the alphabet
X
=
{
x
0
,
x
1
}
. The stability of this calculus under shuffle products relies on the nuclearity of the target space [
32
]. We also concentrated on algebraic and analytic aspects of this extension allowing to index polylogarithms, at non positive multi-indices, by rational series and also allowing to regularize divergent polyzetas, at non positive multi-indices [
10
]. As a continuation of works in [
10
] and in order to understand the bridge between the extension of this “polylogarithmic calculus” and the world of harmonic sums, we propose a local theory, adapted to a full calculus on indices of Harmonic Sums based on the Taylor expansions, around zero, of polylogarithms with index
x
1
on the rightmost end. This theory is not only compatible with Stuffle products but also with the Analytic Model. In this respect, it provides a stable and fully algorithmic model for Harmonic calculus. Examples by computer are also provided.</description><identifier>ISSN: 1661-8270</identifier><identifier>EISSN: 1661-8289</identifier><identifier>DOI: 10.1007/s11786-022-00552-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Automata theory ; Calculus ; Computer Science ; Harmonic functions ; Mathematical analysis ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Power series ; Series (mathematics) ; Sums</subject><ispartof>Mathematics in computer science, 2023-03, Vol.17 (1), Article 4</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-3ce888cb28c95b9a82268d8ed4415ec5c0cb70f9cd6188df9284c292c87b8f6a3</citedby><cites>FETCH-LOGICAL-c363t-3ce888cb28c95b9a82268d8ed4415ec5c0cb70f9cd6188df9284c292c87b8f6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11786-022-00552-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11786-022-00552-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Chien, Bui Van</creatorcontrib><creatorcontrib>Duchamp, Gérard H. E.</creatorcontrib><creatorcontrib>Hoan, Ngo Quoc</creatorcontrib><creatorcontrib>Vincel, Hoang Ngoc Minh</creatorcontrib><creatorcontrib>Vu, Nguyen Dinh</creatorcontrib><title>Towards a Theory of Domains for Harmonic Functions and its Symbolic Counterpart</title><title>Mathematics in computer science</title><addtitle>Math.Comput.Sci</addtitle><description>In this paper, we begin by reviewing the calculus induced by the framework of [
10
]. In there, we extended Polylogarithm functions over a subalgebra of noncommutative rational power series, recognizable by finite state (multiplicity) automata over the alphabet
X
=
{
x
0
,
x
1
}
. The stability of this calculus under shuffle products relies on the nuclearity of the target space [
32
]. We also concentrated on algebraic and analytic aspects of this extension allowing to index polylogarithms, at non positive multi-indices, by rational series and also allowing to regularize divergent polyzetas, at non positive multi-indices [
10
]. As a continuation of works in [
10
] and in order to understand the bridge between the extension of this “polylogarithmic calculus” and the world of harmonic sums, we propose a local theory, adapted to a full calculus on indices of Harmonic Sums based on the Taylor expansions, around zero, of polylogarithms with index
x
1
on the rightmost end. This theory is not only compatible with Stuffle products but also with the Analytic Model. In this respect, it provides a stable and fully algorithmic model for Harmonic calculus. Examples by computer are also provided.</description><subject>Automata theory</subject><subject>Calculus</subject><subject>Computer Science</subject><subject>Harmonic functions</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Power series</subject><subject>Series (mathematics)</subject><subject>Sums</subject><issn>1661-8270</issn><issn>1661-8289</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAUx4MoOKf_gKeA52iSNsnrUaZzwmAH6zmkaaIdazOTFtl_b2dFb57e473vD_ggdM3oLaNU3SXGFEhCOSeUCsGJOEEzJiUjwKE4_d0VPUcXKW0plZzlbIY2Zfg0sU7Y4PLdhXjAweOH0JqmS9iHiFcmtqFrLF4One2bMJ5NV-OmT_jl0FZhN74WYeh6F_cm9pfozJtdclc_c45el4_lYkXWm6fnxf2a2ExmPcmsAwBbcbCFqAoDnEuowdV5zoSzwlJbKeoLW0sGUPuCQ255wS2oCrw02RzdTLn7GD4Gl3q9DUPsxkrNlRJcMCXEqOKTysaQUnRe72PTmnjQjOojOD2B0yM4_Q1OH03ZZEqjuHtz8S_6H9cXXiJwmQ</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Chien, Bui Van</creator><creator>Duchamp, Gérard H. E.</creator><creator>Hoan, Ngo Quoc</creator><creator>Vincel, Hoang Ngoc Minh</creator><creator>Vu, Nguyen Dinh</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230301</creationdate><title>Towards a Theory of Domains for Harmonic Functions and its Symbolic Counterpart</title><author>Chien, Bui Van ; Duchamp, Gérard H. E. ; Hoan, Ngo Quoc ; Vincel, Hoang Ngoc Minh ; Vu, Nguyen Dinh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-3ce888cb28c95b9a82268d8ed4415ec5c0cb70f9cd6188df9284c292c87b8f6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Automata theory</topic><topic>Calculus</topic><topic>Computer Science</topic><topic>Harmonic functions</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Power series</topic><topic>Series (mathematics)</topic><topic>Sums</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chien, Bui Van</creatorcontrib><creatorcontrib>Duchamp, Gérard H. E.</creatorcontrib><creatorcontrib>Hoan, Ngo Quoc</creatorcontrib><creatorcontrib>Vincel, Hoang Ngoc Minh</creatorcontrib><creatorcontrib>Vu, Nguyen Dinh</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematics in computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chien, Bui Van</au><au>Duchamp, Gérard H. E.</au><au>Hoan, Ngo Quoc</au><au>Vincel, Hoang Ngoc Minh</au><au>Vu, Nguyen Dinh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards a Theory of Domains for Harmonic Functions and its Symbolic Counterpart</atitle><jtitle>Mathematics in computer science</jtitle><stitle>Math.Comput.Sci</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>17</volume><issue>1</issue><artnum>4</artnum><issn>1661-8270</issn><eissn>1661-8289</eissn><abstract>In this paper, we begin by reviewing the calculus induced by the framework of [
10
]. In there, we extended Polylogarithm functions over a subalgebra of noncommutative rational power series, recognizable by finite state (multiplicity) automata over the alphabet
X
=
{
x
0
,
x
1
}
. The stability of this calculus under shuffle products relies on the nuclearity of the target space [
32
]. We also concentrated on algebraic and analytic aspects of this extension allowing to index polylogarithms, at non positive multi-indices, by rational series and also allowing to regularize divergent polyzetas, at non positive multi-indices [
10
]. As a continuation of works in [
10
] and in order to understand the bridge between the extension of this “polylogarithmic calculus” and the world of harmonic sums, we propose a local theory, adapted to a full calculus on indices of Harmonic Sums based on the Taylor expansions, around zero, of polylogarithms with index
x
1
on the rightmost end. This theory is not only compatible with Stuffle products but also with the Analytic Model. In this respect, it provides a stable and fully algorithmic model for Harmonic calculus. Examples by computer are also provided.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11786-022-00552-5</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1661-8270 |
ispartof | Mathematics in computer science, 2023-03, Vol.17 (1), Article 4 |
issn | 1661-8270 1661-8289 |
language | eng |
recordid | cdi_proquest_journals_2775251755 |
source | SpringerLink Journals - AutoHoldings |
subjects | Automata theory Calculus Computer Science Harmonic functions Mathematical analysis Mathematical models Mathematics Mathematics and Statistics Power series Series (mathematics) Sums |
title | Towards a Theory of Domains for Harmonic Functions and its Symbolic Counterpart |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A36%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20a%20Theory%20of%20Domains%20for%20Harmonic%20Functions%20and%20its%20Symbolic%20Counterpart&rft.jtitle=Mathematics%20in%20computer%20science&rft.au=Chien,%20Bui%20Van&rft.date=2023-03-01&rft.volume=17&rft.issue=1&rft.artnum=4&rft.issn=1661-8270&rft.eissn=1661-8289&rft_id=info:doi/10.1007/s11786-022-00552-5&rft_dat=%3Cproquest_cross%3E2775251755%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2775251755&rft_id=info:pmid/&rfr_iscdi=true |