Terahertz Sources Based on Metrological‐Grade Frequency Combs

Broadband metrological‐grade frequency comb (FC) synthesizers with a rich number of phase locked modes are the ideal sources for quantum sensing and quantum metrology. At terahertz (THz) frequencies, electrically pumped quantum cascade lasers (QCLs) have shown quantum‐limited frequency noise operati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Laser & photonics reviews 2023-02, Vol.17 (2), p.n/a
Hauptverfasser: Riccardi, Elisa, Pistore, Valentino, Consolino, Luigi, Sorgi, Alessia, Cappelli, Francesco, Eramo, Roberto, De Natale, Paolo, Li, Lianhe, Davies, Alexander Giles, Linfield, Edmund H., Vitiello, Miriam S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page
container_title Laser & photonics reviews
container_volume 17
creator Riccardi, Elisa
Pistore, Valentino
Consolino, Luigi
Sorgi, Alessia
Cappelli, Francesco
Eramo, Roberto
De Natale, Paolo
Li, Lianhe
Davies, Alexander Giles
Linfield, Edmund H.
Vitiello, Miriam S.
description Broadband metrological‐grade frequency comb (FC) synthesizers with a rich number of phase locked modes are the ideal sources for quantum sensing and quantum metrology. At terahertz (THz) frequencies, electrically pumped quantum cascade lasers (QCLs) have shown quantum‐limited frequency noise operation, phase/frequency absolute referencing and self‐starting FC operation, albeit over a rather restricted dynamic range, governed by the nature of the quantum gain media that entangles group velocity dispersion at the different bias points. Here, a technological approach is conceived to achieve FC operation over the entire available gain bandwidth at THz frequencies. The intracavity light intensity of a multistack QCL, inherently showing a giant Kerr nonlinearity, is altered by increasing the mirror losses of its Fabry‐Perot cavity through coating the back facet with an epitaxially‐grown multilayer graphene film. This enables a frequency modulated THz FC showing a proliferation of emitted modes over the entire gain bandwidth and across more than 60% of its operational range, with ≈0.18 mW per mode optical power. The QCL FC is then experimentally characterized to assess its phase coherence, reconstructing its intensity emission profile, instantaneous frequency, and electric field, thus proving its metrological nature. A record dynamic range frequency‐modulated terahertz frequency comb is engineered through coating the back facet of a semiconductor heterostructure laser with an epitaxially grown multilayer graphene film.
doi_str_mv 10.1002/lpor.202200412
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2775186021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2775186021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3572-b8890181c0025e040352711deeace4f5685da134e48859681172fb5665993123</originalsourceid><addsrcrecordid>eNqFUD1PwzAQtRBIlMLKHIk55c6JE2dCUNGCFFQE3S3HuUCrtC52KxQmfgK_kV-Cq6Iycsvd8N69D8bOEQYIwC_blXUDDpwDpMgPWA9llsRSFsXh_pZwzE68nwOIMFmPXU3J6Vdy64_o2W6cIR_daE91ZJfRA62dbe3LzOj2-_Nr7HRN0cjR24aWpouGdlH5U3bU6NbT2e_us-nodjq8i8vJ-H54XcYmETmPq2ADUKIJRgVBCongOWJNpA2ljcikqDUmKaVSiiKTiDlvKpFloigS5EmfXezerpwN8n6t5sHtMigqnucipAOOATXYoYyz3jtq1MrNFtp1CkFtO1LbjtS-o0AodoT3WUvdP2hVPk6e_rg_R4hpzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2775186021</pqid></control><display><type>article</type><title>Terahertz Sources Based on Metrological‐Grade Frequency Combs</title><source>Wiley Journals</source><creator>Riccardi, Elisa ; Pistore, Valentino ; Consolino, Luigi ; Sorgi, Alessia ; Cappelli, Francesco ; Eramo, Roberto ; De Natale, Paolo ; Li, Lianhe ; Davies, Alexander Giles ; Linfield, Edmund H. ; Vitiello, Miriam S.</creator><creatorcontrib>Riccardi, Elisa ; Pistore, Valentino ; Consolino, Luigi ; Sorgi, Alessia ; Cappelli, Francesco ; Eramo, Roberto ; De Natale, Paolo ; Li, Lianhe ; Davies, Alexander Giles ; Linfield, Edmund H. ; Vitiello, Miriam S.</creatorcontrib><description>Broadband metrological‐grade frequency comb (FC) synthesizers with a rich number of phase locked modes are the ideal sources for quantum sensing and quantum metrology. At terahertz (THz) frequencies, electrically pumped quantum cascade lasers (QCLs) have shown quantum‐limited frequency noise operation, phase/frequency absolute referencing and self‐starting FC operation, albeit over a rather restricted dynamic range, governed by the nature of the quantum gain media that entangles group velocity dispersion at the different bias points. Here, a technological approach is conceived to achieve FC operation over the entire available gain bandwidth at THz frequencies. The intracavity light intensity of a multistack QCL, inherently showing a giant Kerr nonlinearity, is altered by increasing the mirror losses of its Fabry‐Perot cavity through coating the back facet with an epitaxially‐grown multilayer graphene film. This enables a frequency modulated THz FC showing a proliferation of emitted modes over the entire gain bandwidth and across more than 60% of its operational range, with ≈0.18 mW per mode optical power. The QCL FC is then experimentally characterized to assess its phase coherence, reconstructing its intensity emission profile, instantaneous frequency, and electric field, thus proving its metrological nature. A record dynamic range frequency‐modulated terahertz frequency comb is engineered through coating the back facet of a semiconductor heterostructure laser with an epitaxially grown multilayer graphene film.</description><identifier>ISSN: 1863-8880</identifier><identifier>EISSN: 1863-8899</identifier><identifier>DOI: 10.1002/lpor.202200412</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Bandwidths ; Broadband ; Electric fields ; Emission analysis ; Epitaxial growth ; frequency combs ; Graphene ; Group velocity ; Luminous intensity ; Metrology ; Multilayers ; Phase coherence ; Quantum cascade lasers ; Synthesizers ; terahertz ; Terahertz frequencies</subject><ispartof>Laser &amp; photonics reviews, 2023-02, Vol.17 (2), p.n/a</ispartof><rights>2022 The Authors. Laser &amp; Photonics Reviews published by Wiley‐VCH GmbH</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3572-b8890181c0025e040352711deeace4f5685da134e48859681172fb5665993123</citedby><cites>FETCH-LOGICAL-c3572-b8890181c0025e040352711deeace4f5685da134e48859681172fb5665993123</cites><orcidid>0000-0002-4914-0421</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Flpor.202200412$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Flpor.202200412$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Riccardi, Elisa</creatorcontrib><creatorcontrib>Pistore, Valentino</creatorcontrib><creatorcontrib>Consolino, Luigi</creatorcontrib><creatorcontrib>Sorgi, Alessia</creatorcontrib><creatorcontrib>Cappelli, Francesco</creatorcontrib><creatorcontrib>Eramo, Roberto</creatorcontrib><creatorcontrib>De Natale, Paolo</creatorcontrib><creatorcontrib>Li, Lianhe</creatorcontrib><creatorcontrib>Davies, Alexander Giles</creatorcontrib><creatorcontrib>Linfield, Edmund H.</creatorcontrib><creatorcontrib>Vitiello, Miriam S.</creatorcontrib><title>Terahertz Sources Based on Metrological‐Grade Frequency Combs</title><title>Laser &amp; photonics reviews</title><description>Broadband metrological‐grade frequency comb (FC) synthesizers with a rich number of phase locked modes are the ideal sources for quantum sensing and quantum metrology. At terahertz (THz) frequencies, electrically pumped quantum cascade lasers (QCLs) have shown quantum‐limited frequency noise operation, phase/frequency absolute referencing and self‐starting FC operation, albeit over a rather restricted dynamic range, governed by the nature of the quantum gain media that entangles group velocity dispersion at the different bias points. Here, a technological approach is conceived to achieve FC operation over the entire available gain bandwidth at THz frequencies. The intracavity light intensity of a multistack QCL, inherently showing a giant Kerr nonlinearity, is altered by increasing the mirror losses of its Fabry‐Perot cavity through coating the back facet with an epitaxially‐grown multilayer graphene film. This enables a frequency modulated THz FC showing a proliferation of emitted modes over the entire gain bandwidth and across more than 60% of its operational range, with ≈0.18 mW per mode optical power. The QCL FC is then experimentally characterized to assess its phase coherence, reconstructing its intensity emission profile, instantaneous frequency, and electric field, thus proving its metrological nature. A record dynamic range frequency‐modulated terahertz frequency comb is engineered through coating the back facet of a semiconductor heterostructure laser with an epitaxially grown multilayer graphene film.</description><subject>Bandwidths</subject><subject>Broadband</subject><subject>Electric fields</subject><subject>Emission analysis</subject><subject>Epitaxial growth</subject><subject>frequency combs</subject><subject>Graphene</subject><subject>Group velocity</subject><subject>Luminous intensity</subject><subject>Metrology</subject><subject>Multilayers</subject><subject>Phase coherence</subject><subject>Quantum cascade lasers</subject><subject>Synthesizers</subject><subject>terahertz</subject><subject>Terahertz frequencies</subject><issn>1863-8880</issn><issn>1863-8899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFUD1PwzAQtRBIlMLKHIk55c6JE2dCUNGCFFQE3S3HuUCrtC52KxQmfgK_kV-Cq6Iycsvd8N69D8bOEQYIwC_blXUDDpwDpMgPWA9llsRSFsXh_pZwzE68nwOIMFmPXU3J6Vdy64_o2W6cIR_daE91ZJfRA62dbe3LzOj2-_Nr7HRN0cjR24aWpouGdlH5U3bU6NbT2e_us-nodjq8i8vJ-H54XcYmETmPq2ADUKIJRgVBCongOWJNpA2ljcikqDUmKaVSiiKTiDlvKpFloigS5EmfXezerpwN8n6t5sHtMigqnucipAOOATXYoYyz3jtq1MrNFtp1CkFtO1LbjtS-o0AodoT3WUvdP2hVPk6e_rg_R4hpzw</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>Riccardi, Elisa</creator><creator>Pistore, Valentino</creator><creator>Consolino, Luigi</creator><creator>Sorgi, Alessia</creator><creator>Cappelli, Francesco</creator><creator>Eramo, Roberto</creator><creator>De Natale, Paolo</creator><creator>Li, Lianhe</creator><creator>Davies, Alexander Giles</creator><creator>Linfield, Edmund H.</creator><creator>Vitiello, Miriam S.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4914-0421</orcidid></search><sort><creationdate>202302</creationdate><title>Terahertz Sources Based on Metrological‐Grade Frequency Combs</title><author>Riccardi, Elisa ; Pistore, Valentino ; Consolino, Luigi ; Sorgi, Alessia ; Cappelli, Francesco ; Eramo, Roberto ; De Natale, Paolo ; Li, Lianhe ; Davies, Alexander Giles ; Linfield, Edmund H. ; Vitiello, Miriam S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3572-b8890181c0025e040352711deeace4f5685da134e48859681172fb5665993123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bandwidths</topic><topic>Broadband</topic><topic>Electric fields</topic><topic>Emission analysis</topic><topic>Epitaxial growth</topic><topic>frequency combs</topic><topic>Graphene</topic><topic>Group velocity</topic><topic>Luminous intensity</topic><topic>Metrology</topic><topic>Multilayers</topic><topic>Phase coherence</topic><topic>Quantum cascade lasers</topic><topic>Synthesizers</topic><topic>terahertz</topic><topic>Terahertz frequencies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riccardi, Elisa</creatorcontrib><creatorcontrib>Pistore, Valentino</creatorcontrib><creatorcontrib>Consolino, Luigi</creatorcontrib><creatorcontrib>Sorgi, Alessia</creatorcontrib><creatorcontrib>Cappelli, Francesco</creatorcontrib><creatorcontrib>Eramo, Roberto</creatorcontrib><creatorcontrib>De Natale, Paolo</creatorcontrib><creatorcontrib>Li, Lianhe</creatorcontrib><creatorcontrib>Davies, Alexander Giles</creatorcontrib><creatorcontrib>Linfield, Edmund H.</creatorcontrib><creatorcontrib>Vitiello, Miriam S.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Laser &amp; photonics reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riccardi, Elisa</au><au>Pistore, Valentino</au><au>Consolino, Luigi</au><au>Sorgi, Alessia</au><au>Cappelli, Francesco</au><au>Eramo, Roberto</au><au>De Natale, Paolo</au><au>Li, Lianhe</au><au>Davies, Alexander Giles</au><au>Linfield, Edmund H.</au><au>Vitiello, Miriam S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Terahertz Sources Based on Metrological‐Grade Frequency Combs</atitle><jtitle>Laser &amp; photonics reviews</jtitle><date>2023-02</date><risdate>2023</risdate><volume>17</volume><issue>2</issue><epage>n/a</epage><issn>1863-8880</issn><eissn>1863-8899</eissn><abstract>Broadband metrological‐grade frequency comb (FC) synthesizers with a rich number of phase locked modes are the ideal sources for quantum sensing and quantum metrology. At terahertz (THz) frequencies, electrically pumped quantum cascade lasers (QCLs) have shown quantum‐limited frequency noise operation, phase/frequency absolute referencing and self‐starting FC operation, albeit over a rather restricted dynamic range, governed by the nature of the quantum gain media that entangles group velocity dispersion at the different bias points. Here, a technological approach is conceived to achieve FC operation over the entire available gain bandwidth at THz frequencies. The intracavity light intensity of a multistack QCL, inherently showing a giant Kerr nonlinearity, is altered by increasing the mirror losses of its Fabry‐Perot cavity through coating the back facet with an epitaxially‐grown multilayer graphene film. This enables a frequency modulated THz FC showing a proliferation of emitted modes over the entire gain bandwidth and across more than 60% of its operational range, with ≈0.18 mW per mode optical power. The QCL FC is then experimentally characterized to assess its phase coherence, reconstructing its intensity emission profile, instantaneous frequency, and electric field, thus proving its metrological nature. A record dynamic range frequency‐modulated terahertz frequency comb is engineered through coating the back facet of a semiconductor heterostructure laser with an epitaxially grown multilayer graphene film.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/lpor.202200412</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4914-0421</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1863-8880
ispartof Laser & photonics reviews, 2023-02, Vol.17 (2), p.n/a
issn 1863-8880
1863-8899
language eng
recordid cdi_proquest_journals_2775186021
source Wiley Journals
subjects Bandwidths
Broadband
Electric fields
Emission analysis
Epitaxial growth
frequency combs
Graphene
Group velocity
Luminous intensity
Metrology
Multilayers
Phase coherence
Quantum cascade lasers
Synthesizers
terahertz
Terahertz frequencies
title Terahertz Sources Based on Metrological‐Grade Frequency Combs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A57%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Terahertz%20Sources%20Based%20on%20Metrological%E2%80%90Grade%20Frequency%20Combs&rft.jtitle=Laser%20&%20photonics%20reviews&rft.au=Riccardi,%20Elisa&rft.date=2023-02&rft.volume=17&rft.issue=2&rft.epage=n/a&rft.issn=1863-8880&rft.eissn=1863-8899&rft_id=info:doi/10.1002/lpor.202200412&rft_dat=%3Cproquest_cross%3E2775186021%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2775186021&rft_id=info:pmid/&rfr_iscdi=true