Amorphous 2D‐Nanoplatelets of Red Phosphorus Obtained by Liquid‐Phase Exfoliation Yield High Areal Capacity Na‐Ion Battery Anodes
The development of sodium ion batteries will require high‐performance electrodes with very large areal capacity and reasonable rate performance. Although red phosphorus is a very promising electrode material, it has not yet fulfilled these requirements. Here, liquid phase exfoliation is used to conv...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2023-02, Vol.13 (6), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 13 |
creator | Kaur, Harneet Konkena, Bharathi Gabbett, Cian Smith, Ross McCrystall, Mark Tian, Ruiyuan Roy, Ahin Carey, Tian Vega‐Mayoral, Victor Nicolosi, Valeria Coleman, Jonathan N. |
description | The development of sodium ion batteries will require high‐performance electrodes with very large areal capacity and reasonable rate performance. Although red phosphorus is a very promising electrode material, it has not yet fulfilled these requirements. Here, liquid phase exfoliation is used to convert solid red phosphorus into amorphous, quasi‐2D nanoplatelets. These nanoplatelets have lateral sizes of hundreds of nanometers, thickness of 10s of nanometers and are quite stable in ambient conditions, displaying only low levels of oxidation on the nanosheet surface. By solution mixing with carbon nanotubes, these nanoplatelets can be fabricated into nanocomposite battery anodes. After employing an extended activation process, good cycling stability over 1000 cycles and low‐rate capacitances >2000 mAh gP−1 is achieved. Because of the high conductivity and mechanical robustness provided by the nanotube network, it is possible to fabricate very thick electrodes. These electrodes display extremely high areal capacities approaching 10 mAh cm−2 at currents of ≈1 mA cm−2. Detailed analysis shows these electrodes to be limited by solid‐state diffusion such that the thickest electrodes have state‐of‐the‐art rate performance and a near‐optimized combination of capacity and rate performance.
Liquid phase exfoliation is used to synthesize 2D‐nanoplatelets of red‐phosphorus. These nanoplatelets are used to make electrodes for sodium‐ion batteries using carbon nanotubes as both binder and conductive additive. The electrodes display good stability over 1000 cycles and excellent low‐rate capacities >2000 mAh g−1. The thick electrodes display very high areal capacities of 10 mAh cm−2 at 1 mA cm−2. |
doi_str_mv | 10.1002/aenm.202203013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2775185028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2775185028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3573-c8878fd6d2e1972497b8b784c8817a1895f672ca77deba3300ed9440b8270613</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhiMEElXpymyJOcUfSeyMoRRaqbQV6sJkOYlDXKVxaieCbGys_EZ-Ca6Kysgtdzo9z530et41gmMEIb4Vst6NMcQYEojImTdAEQr8iAXw_DQTfOmNrN1CV0GMICED7zPZadOUurMA339_fC1FrZtKtLKSrQW6AM8yB-tSW8cYB63SVqja7dIeLNS-U7mT1qWwEkzfC10p0SpdgxclqxzM1GsJEiNFBSaiEZlqe7AUTpg75E60rTQ9SGqdS3vlXRSisnL024fe5mG6mcz8xepxPkkWfkZCSvyMMcqKPMqxRDHFQUxTllIWuD2iArE4LCKKM0FpLlNBCIQyj4MApgxTGCEy9G6OZxuj9520Ld_qztTuI8eUhoiFEDNHjY9UZrS1Rha8MWonTM8R5Ie4-SFuforbCfFReFOV7P-heTJdPv25P-xQhl8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2775185028</pqid></control><display><type>article</type><title>Amorphous 2D‐Nanoplatelets of Red Phosphorus Obtained by Liquid‐Phase Exfoliation Yield High Areal Capacity Na‐Ion Battery Anodes</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Kaur, Harneet ; Konkena, Bharathi ; Gabbett, Cian ; Smith, Ross ; McCrystall, Mark ; Tian, Ruiyuan ; Roy, Ahin ; Carey, Tian ; Vega‐Mayoral, Victor ; Nicolosi, Valeria ; Coleman, Jonathan N.</creator><creatorcontrib>Kaur, Harneet ; Konkena, Bharathi ; Gabbett, Cian ; Smith, Ross ; McCrystall, Mark ; Tian, Ruiyuan ; Roy, Ahin ; Carey, Tian ; Vega‐Mayoral, Victor ; Nicolosi, Valeria ; Coleman, Jonathan N.</creatorcontrib><description>The development of sodium ion batteries will require high‐performance electrodes with very large areal capacity and reasonable rate performance. Although red phosphorus is a very promising electrode material, it has not yet fulfilled these requirements. Here, liquid phase exfoliation is used to convert solid red phosphorus into amorphous, quasi‐2D nanoplatelets. These nanoplatelets have lateral sizes of hundreds of nanometers, thickness of 10s of nanometers and are quite stable in ambient conditions, displaying only low levels of oxidation on the nanosheet surface. By solution mixing with carbon nanotubes, these nanoplatelets can be fabricated into nanocomposite battery anodes. After employing an extended activation process, good cycling stability over 1000 cycles and low‐rate capacitances >2000 mAh gP−1 is achieved. Because of the high conductivity and mechanical robustness provided by the nanotube network, it is possible to fabricate very thick electrodes. These electrodes display extremely high areal capacities approaching 10 mAh cm−2 at currents of ≈1 mA cm−2. Detailed analysis shows these electrodes to be limited by solid‐state diffusion such that the thickest electrodes have state‐of‐the‐art rate performance and a near‐optimized combination of capacity and rate performance.
Liquid phase exfoliation is used to synthesize 2D‐nanoplatelets of red‐phosphorus. These nanoplatelets are used to make electrodes for sodium‐ion batteries using carbon nanotubes as both binder and conductive additive. The electrodes display good stability over 1000 cycles and excellent low‐rate capacities >2000 mAh g−1. The thick electrodes display very high areal capacities of 10 mAh cm−2 at 1 mA cm−2.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202203013</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anodes ; areal capacity ; batteries ; Carbon nanotubes ; Diffusion rate ; Electrode materials ; Electrodes ; Exfoliation ; Liquid phases ; liquid‐phase exfoliation ; Nanocomposites ; nanoplatelets ; Oxidation ; Phosphorus ; Platelets (materials) ; Rechargeable batteries ; red phosphorus ; Sodium ; Sodium-ion batteries ; sodium‐ion ; Thickness</subject><ispartof>Advanced energy materials, 2023-02, Vol.13 (6), p.n/a</ispartof><rights>2022 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3573-c8878fd6d2e1972497b8b784c8817a1895f672ca77deba3300ed9440b8270613</citedby><cites>FETCH-LOGICAL-c3573-c8878fd6d2e1972497b8b784c8817a1895f672ca77deba3300ed9440b8270613</cites><orcidid>0000-0001-9659-9721</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202203013$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202203013$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids></links><search><creatorcontrib>Kaur, Harneet</creatorcontrib><creatorcontrib>Konkena, Bharathi</creatorcontrib><creatorcontrib>Gabbett, Cian</creatorcontrib><creatorcontrib>Smith, Ross</creatorcontrib><creatorcontrib>McCrystall, Mark</creatorcontrib><creatorcontrib>Tian, Ruiyuan</creatorcontrib><creatorcontrib>Roy, Ahin</creatorcontrib><creatorcontrib>Carey, Tian</creatorcontrib><creatorcontrib>Vega‐Mayoral, Victor</creatorcontrib><creatorcontrib>Nicolosi, Valeria</creatorcontrib><creatorcontrib>Coleman, Jonathan N.</creatorcontrib><title>Amorphous 2D‐Nanoplatelets of Red Phosphorus Obtained by Liquid‐Phase Exfoliation Yield High Areal Capacity Na‐Ion Battery Anodes</title><title>Advanced energy materials</title><description>The development of sodium ion batteries will require high‐performance electrodes with very large areal capacity and reasonable rate performance. Although red phosphorus is a very promising electrode material, it has not yet fulfilled these requirements. Here, liquid phase exfoliation is used to convert solid red phosphorus into amorphous, quasi‐2D nanoplatelets. These nanoplatelets have lateral sizes of hundreds of nanometers, thickness of 10s of nanometers and are quite stable in ambient conditions, displaying only low levels of oxidation on the nanosheet surface. By solution mixing with carbon nanotubes, these nanoplatelets can be fabricated into nanocomposite battery anodes. After employing an extended activation process, good cycling stability over 1000 cycles and low‐rate capacitances >2000 mAh gP−1 is achieved. Because of the high conductivity and mechanical robustness provided by the nanotube network, it is possible to fabricate very thick electrodes. These electrodes display extremely high areal capacities approaching 10 mAh cm−2 at currents of ≈1 mA cm−2. Detailed analysis shows these electrodes to be limited by solid‐state diffusion such that the thickest electrodes have state‐of‐the‐art rate performance and a near‐optimized combination of capacity and rate performance.
Liquid phase exfoliation is used to synthesize 2D‐nanoplatelets of red‐phosphorus. These nanoplatelets are used to make electrodes for sodium‐ion batteries using carbon nanotubes as both binder and conductive additive. The electrodes display good stability over 1000 cycles and excellent low‐rate capacities >2000 mAh g−1. The thick electrodes display very high areal capacities of 10 mAh cm−2 at 1 mA cm−2.</description><subject>Anodes</subject><subject>areal capacity</subject><subject>batteries</subject><subject>Carbon nanotubes</subject><subject>Diffusion rate</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Exfoliation</subject><subject>Liquid phases</subject><subject>liquid‐phase exfoliation</subject><subject>Nanocomposites</subject><subject>nanoplatelets</subject><subject>Oxidation</subject><subject>Phosphorus</subject><subject>Platelets (materials)</subject><subject>Rechargeable batteries</subject><subject>red phosphorus</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>sodium‐ion</subject><subject>Thickness</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkD1PwzAQhiMEElXpymyJOcUfSeyMoRRaqbQV6sJkOYlDXKVxaieCbGys_EZ-Ca6Kysgtdzo9z530et41gmMEIb4Vst6NMcQYEojImTdAEQr8iAXw_DQTfOmNrN1CV0GMICED7zPZadOUurMA339_fC1FrZtKtLKSrQW6AM8yB-tSW8cYB63SVqja7dIeLNS-U7mT1qWwEkzfC10p0SpdgxclqxzM1GsJEiNFBSaiEZlqe7AUTpg75E60rTQ9SGqdS3vlXRSisnL024fe5mG6mcz8xepxPkkWfkZCSvyMMcqKPMqxRDHFQUxTllIWuD2iArE4LCKKM0FpLlNBCIQyj4MApgxTGCEy9G6OZxuj9520Ld_qztTuI8eUhoiFEDNHjY9UZrS1Rha8MWonTM8R5Ie4-SFuforbCfFReFOV7P-heTJdPv25P-xQhl8</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Kaur, Harneet</creator><creator>Konkena, Bharathi</creator><creator>Gabbett, Cian</creator><creator>Smith, Ross</creator><creator>McCrystall, Mark</creator><creator>Tian, Ruiyuan</creator><creator>Roy, Ahin</creator><creator>Carey, Tian</creator><creator>Vega‐Mayoral, Victor</creator><creator>Nicolosi, Valeria</creator><creator>Coleman, Jonathan N.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9659-9721</orcidid></search><sort><creationdate>20230201</creationdate><title>Amorphous 2D‐Nanoplatelets of Red Phosphorus Obtained by Liquid‐Phase Exfoliation Yield High Areal Capacity Na‐Ion Battery Anodes</title><author>Kaur, Harneet ; Konkena, Bharathi ; Gabbett, Cian ; Smith, Ross ; McCrystall, Mark ; Tian, Ruiyuan ; Roy, Ahin ; Carey, Tian ; Vega‐Mayoral, Victor ; Nicolosi, Valeria ; Coleman, Jonathan N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3573-c8878fd6d2e1972497b8b784c8817a1895f672ca77deba3300ed9440b8270613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anodes</topic><topic>areal capacity</topic><topic>batteries</topic><topic>Carbon nanotubes</topic><topic>Diffusion rate</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Exfoliation</topic><topic>Liquid phases</topic><topic>liquid‐phase exfoliation</topic><topic>Nanocomposites</topic><topic>nanoplatelets</topic><topic>Oxidation</topic><topic>Phosphorus</topic><topic>Platelets (materials)</topic><topic>Rechargeable batteries</topic><topic>red phosphorus</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>sodium‐ion</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaur, Harneet</creatorcontrib><creatorcontrib>Konkena, Bharathi</creatorcontrib><creatorcontrib>Gabbett, Cian</creatorcontrib><creatorcontrib>Smith, Ross</creatorcontrib><creatorcontrib>McCrystall, Mark</creatorcontrib><creatorcontrib>Tian, Ruiyuan</creatorcontrib><creatorcontrib>Roy, Ahin</creatorcontrib><creatorcontrib>Carey, Tian</creatorcontrib><creatorcontrib>Vega‐Mayoral, Victor</creatorcontrib><creatorcontrib>Nicolosi, Valeria</creatorcontrib><creatorcontrib>Coleman, Jonathan N.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaur, Harneet</au><au>Konkena, Bharathi</au><au>Gabbett, Cian</au><au>Smith, Ross</au><au>McCrystall, Mark</au><au>Tian, Ruiyuan</au><au>Roy, Ahin</au><au>Carey, Tian</au><au>Vega‐Mayoral, Victor</au><au>Nicolosi, Valeria</au><au>Coleman, Jonathan N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Amorphous 2D‐Nanoplatelets of Red Phosphorus Obtained by Liquid‐Phase Exfoliation Yield High Areal Capacity Na‐Ion Battery Anodes</atitle><jtitle>Advanced energy materials</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>13</volume><issue>6</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>The development of sodium ion batteries will require high‐performance electrodes with very large areal capacity and reasonable rate performance. Although red phosphorus is a very promising electrode material, it has not yet fulfilled these requirements. Here, liquid phase exfoliation is used to convert solid red phosphorus into amorphous, quasi‐2D nanoplatelets. These nanoplatelets have lateral sizes of hundreds of nanometers, thickness of 10s of nanometers and are quite stable in ambient conditions, displaying only low levels of oxidation on the nanosheet surface. By solution mixing with carbon nanotubes, these nanoplatelets can be fabricated into nanocomposite battery anodes. After employing an extended activation process, good cycling stability over 1000 cycles and low‐rate capacitances >2000 mAh gP−1 is achieved. Because of the high conductivity and mechanical robustness provided by the nanotube network, it is possible to fabricate very thick electrodes. These electrodes display extremely high areal capacities approaching 10 mAh cm−2 at currents of ≈1 mA cm−2. Detailed analysis shows these electrodes to be limited by solid‐state diffusion such that the thickest electrodes have state‐of‐the‐art rate performance and a near‐optimized combination of capacity and rate performance.
Liquid phase exfoliation is used to synthesize 2D‐nanoplatelets of red‐phosphorus. These nanoplatelets are used to make electrodes for sodium‐ion batteries using carbon nanotubes as both binder and conductive additive. The electrodes display good stability over 1000 cycles and excellent low‐rate capacities >2000 mAh g−1. The thick electrodes display very high areal capacities of 10 mAh cm−2 at 1 mA cm−2.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202203013</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-9659-9721</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2023-02, Vol.13 (6), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_2775185028 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Anodes areal capacity batteries Carbon nanotubes Diffusion rate Electrode materials Electrodes Exfoliation Liquid phases liquid‐phase exfoliation Nanocomposites nanoplatelets Oxidation Phosphorus Platelets (materials) Rechargeable batteries red phosphorus Sodium Sodium-ion batteries sodium‐ion Thickness |
title | Amorphous 2D‐Nanoplatelets of Red Phosphorus Obtained by Liquid‐Phase Exfoliation Yield High Areal Capacity Na‐Ion Battery Anodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T03%3A45%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Amorphous%202D%E2%80%90Nanoplatelets%20of%20Red%20Phosphorus%20Obtained%20by%20Liquid%E2%80%90Phase%20Exfoliation%20Yield%20High%20Areal%20Capacity%20Na%E2%80%90Ion%20Battery%20Anodes&rft.jtitle=Advanced%20energy%20materials&rft.au=Kaur,%20Harneet&rft.date=2023-02-01&rft.volume=13&rft.issue=6&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202203013&rft_dat=%3Cproquest_cross%3E2775185028%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2775185028&rft_id=info:pmid/&rfr_iscdi=true |