Simulation analysis of aramid fiber reinforced polymer hole machining and experimental study on delamination mechanism
The AFRP (aramid fiber reinforced polymer) material’s finite element model is built using ABAQUS software for resin and aramid fiber based on the Johnson–Cook failure and Hashin failure criterion. The effects of feed rate and hole diameter on axial force and fiber layer displacement are determined b...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2023-03, Vol.125 (1-2), p.417-433 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 433 |
---|---|
container_issue | 1-2 |
container_start_page | 417 |
container_title | International journal of advanced manufacturing technology |
container_volume | 125 |
creator | Shi, Wentian Yan, Tianming Liu, Yude Wang, Lin Dong, Lu Xie, Chuan |
description | The AFRP (aramid fiber reinforced polymer) material’s finite element model is built using ABAQUS software for resin and aramid fiber based on the Johnson–Cook failure and Hashin failure criterion. The effects of feed rate and hole diameter on axial force and fiber layer displacement are determined by the simulation study of milling holes. It was possible to decide on the delamination force and produce the fiber layer displacement curve by measuring the delamination force of aramid fiber composites with various layer thicknesses and hole diameters. Elastic deformation, linear loading delamination, severe failure delamination, and stability failure delamination were classified into four phases. The geometric model for Tool-AFRP hole machining is created. The functional connection between delamination force and fiber layer displacement is obtained from the model’s axial force production process. The Kistler9129AA dynamometer is used to conduct the hole machining experiment. Analysis of the variation law of the hole machining axial force under the aforementioned influencing elements, as well as the impacts of feed speed, hole diameter, and processing method, further demonstrates the accuracy of the geometric model, the variation law of the delamination force and fiber layer displacement in the test agrees with the derivation above. |
doi_str_mv | 10.1007/s00170-022-10645-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2775130222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2775130222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-5e34795419c64abdb5334b380301af306eb2194e39684c2465bbd9abd0a23ea03</originalsourceid><addsrcrecordid>eNp9kM1KxDAYRYMoOI6-gKuA62j-mrZLGfwDwYW6Dmn7dSZDm9SklenbG63gzlXg45wb7kXoktFrRml-EyllOSWUc8Kokhk5HKEVk0IQQVl2jFaUq4KIXBWn6CzGfcIVU8UKfb7afurMaL3DxplujjZi32ITTG8b3NoKAg5gXetDDQ0efDf36bTzHeDe1DvrrNsmtcFwGCDYHtxoOhzHqZlxCm2gS0lu-aGHemecjf05OmlNF-Hi912j9_u7t80jeX55eNrcPpOay3IkGQiZl5lkZa2kqZoqE0JWoqCplWkFVVBxVkoQpSpkUlRWVU2ZQGq4AEPFGl0tuUPwHxPEUe_9FFLPqHmeZ0ykxXii-ELVwccYoNVDKmLCrBnV3_vqZV-daP2zrz4kSSxSTLDbQviL_sf6AnC-gEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2775130222</pqid></control><display><type>article</type><title>Simulation analysis of aramid fiber reinforced polymer hole machining and experimental study on delamination mechanism</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shi, Wentian ; Yan, Tianming ; Liu, Yude ; Wang, Lin ; Dong, Lu ; Xie, Chuan</creator><creatorcontrib>Shi, Wentian ; Yan, Tianming ; Liu, Yude ; Wang, Lin ; Dong, Lu ; Xie, Chuan</creatorcontrib><description>The AFRP (aramid fiber reinforced polymer) material’s finite element model is built using ABAQUS software for resin and aramid fiber based on the Johnson–Cook failure and Hashin failure criterion. The effects of feed rate and hole diameter on axial force and fiber layer displacement are determined by the simulation study of milling holes. It was possible to decide on the delamination force and produce the fiber layer displacement curve by measuring the delamination force of aramid fiber composites with various layer thicknesses and hole diameters. Elastic deformation, linear loading delamination, severe failure delamination, and stability failure delamination were classified into four phases. The geometric model for Tool-AFRP hole machining is created. The functional connection between delamination force and fiber layer displacement is obtained from the model’s axial force production process. The Kistler9129AA dynamometer is used to conduct the hole machining experiment. Analysis of the variation law of the hole machining axial force under the aforementioned influencing elements, as well as the impacts of feed speed, hole diameter, and processing method, further demonstrates the accuracy of the geometric model, the variation law of the delamination force and fiber layer displacement in the test agrees with the derivation above.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-022-10645-x</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Advanced manufacturing technologies ; Aramid fiber composites ; Aramid fiber reinforced plastics ; Axial forces ; CAE) and Design ; Computer simulation ; Computer-Aided Engineering (CAD ; Deformation ; Delamination ; Diameters ; Displacement ; Drilling ; Efficiency ; Elastic deformation ; Engineering ; Failure ; Feed rate ; Fiber reinforced polymers ; Finite element method ; Geometric accuracy ; Industrial and Production Engineering ; Mathematical models ; Mechanical Engineering ; Media Management ; Milling (machining) ; Original Article ; Polymers ; Simulation ; Strain hardening ; Thickness</subject><ispartof>International journal of advanced manufacturing technology, 2023-03, Vol.125 (1-2), p.417-433</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-5e34795419c64abdb5334b380301af306eb2194e39684c2465bbd9abd0a23ea03</citedby><cites>FETCH-LOGICAL-c249t-5e34795419c64abdb5334b380301af306eb2194e39684c2465bbd9abd0a23ea03</cites><orcidid>0000-0002-9320-4461</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-022-10645-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-022-10645-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Shi, Wentian</creatorcontrib><creatorcontrib>Yan, Tianming</creatorcontrib><creatorcontrib>Liu, Yude</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Dong, Lu</creatorcontrib><creatorcontrib>Xie, Chuan</creatorcontrib><title>Simulation analysis of aramid fiber reinforced polymer hole machining and experimental study on delamination mechanism</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>The AFRP (aramid fiber reinforced polymer) material’s finite element model is built using ABAQUS software for resin and aramid fiber based on the Johnson–Cook failure and Hashin failure criterion. The effects of feed rate and hole diameter on axial force and fiber layer displacement are determined by the simulation study of milling holes. It was possible to decide on the delamination force and produce the fiber layer displacement curve by measuring the delamination force of aramid fiber composites with various layer thicknesses and hole diameters. Elastic deformation, linear loading delamination, severe failure delamination, and stability failure delamination were classified into four phases. The geometric model for Tool-AFRP hole machining is created. The functional connection between delamination force and fiber layer displacement is obtained from the model’s axial force production process. The Kistler9129AA dynamometer is used to conduct the hole machining experiment. Analysis of the variation law of the hole machining axial force under the aforementioned influencing elements, as well as the impacts of feed speed, hole diameter, and processing method, further demonstrates the accuracy of the geometric model, the variation law of the delamination force and fiber layer displacement in the test agrees with the derivation above.</description><subject>Advanced manufacturing technologies</subject><subject>Aramid fiber composites</subject><subject>Aramid fiber reinforced plastics</subject><subject>Axial forces</subject><subject>CAE) and Design</subject><subject>Computer simulation</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Deformation</subject><subject>Delamination</subject><subject>Diameters</subject><subject>Displacement</subject><subject>Drilling</subject><subject>Efficiency</subject><subject>Elastic deformation</subject><subject>Engineering</subject><subject>Failure</subject><subject>Feed rate</subject><subject>Fiber reinforced polymers</subject><subject>Finite element method</subject><subject>Geometric accuracy</subject><subject>Industrial and Production Engineering</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Milling (machining)</subject><subject>Original Article</subject><subject>Polymers</subject><subject>Simulation</subject><subject>Strain hardening</subject><subject>Thickness</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kM1KxDAYRYMoOI6-gKuA62j-mrZLGfwDwYW6Dmn7dSZDm9SklenbG63gzlXg45wb7kXoktFrRml-EyllOSWUc8Kokhk5HKEVk0IQQVl2jFaUq4KIXBWn6CzGfcIVU8UKfb7afurMaL3DxplujjZi32ITTG8b3NoKAg5gXetDDQ0efDf36bTzHeDe1DvrrNsmtcFwGCDYHtxoOhzHqZlxCm2gS0lu-aGHemecjf05OmlNF-Hi912j9_u7t80jeX55eNrcPpOay3IkGQiZl5lkZa2kqZoqE0JWoqCplWkFVVBxVkoQpSpkUlRWVU2ZQGq4AEPFGl0tuUPwHxPEUe_9FFLPqHmeZ0ykxXii-ELVwccYoNVDKmLCrBnV3_vqZV-daP2zrz4kSSxSTLDbQviL_sf6AnC-gEw</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Shi, Wentian</creator><creator>Yan, Tianming</creator><creator>Liu, Yude</creator><creator>Wang, Lin</creator><creator>Dong, Lu</creator><creator>Xie, Chuan</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-9320-4461</orcidid></search><sort><creationdate>20230301</creationdate><title>Simulation analysis of aramid fiber reinforced polymer hole machining and experimental study on delamination mechanism</title><author>Shi, Wentian ; Yan, Tianming ; Liu, Yude ; Wang, Lin ; Dong, Lu ; Xie, Chuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-5e34795419c64abdb5334b380301af306eb2194e39684c2465bbd9abd0a23ea03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Advanced manufacturing technologies</topic><topic>Aramid fiber composites</topic><topic>Aramid fiber reinforced plastics</topic><topic>Axial forces</topic><topic>CAE) and Design</topic><topic>Computer simulation</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Deformation</topic><topic>Delamination</topic><topic>Diameters</topic><topic>Displacement</topic><topic>Drilling</topic><topic>Efficiency</topic><topic>Elastic deformation</topic><topic>Engineering</topic><topic>Failure</topic><topic>Feed rate</topic><topic>Fiber reinforced polymers</topic><topic>Finite element method</topic><topic>Geometric accuracy</topic><topic>Industrial and Production Engineering</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Milling (machining)</topic><topic>Original Article</topic><topic>Polymers</topic><topic>Simulation</topic><topic>Strain hardening</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Wentian</creatorcontrib><creatorcontrib>Yan, Tianming</creatorcontrib><creatorcontrib>Liu, Yude</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Dong, Lu</creatorcontrib><creatorcontrib>Xie, Chuan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Wentian</au><au>Yan, Tianming</au><au>Liu, Yude</au><au>Wang, Lin</au><au>Dong, Lu</au><au>Xie, Chuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation analysis of aramid fiber reinforced polymer hole machining and experimental study on delamination mechanism</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>125</volume><issue>1-2</issue><spage>417</spage><epage>433</epage><pages>417-433</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>The AFRP (aramid fiber reinforced polymer) material’s finite element model is built using ABAQUS software for resin and aramid fiber based on the Johnson–Cook failure and Hashin failure criterion. The effects of feed rate and hole diameter on axial force and fiber layer displacement are determined by the simulation study of milling holes. It was possible to decide on the delamination force and produce the fiber layer displacement curve by measuring the delamination force of aramid fiber composites with various layer thicknesses and hole diameters. Elastic deformation, linear loading delamination, severe failure delamination, and stability failure delamination were classified into four phases. The geometric model for Tool-AFRP hole machining is created. The functional connection between delamination force and fiber layer displacement is obtained from the model’s axial force production process. The Kistler9129AA dynamometer is used to conduct the hole machining experiment. Analysis of the variation law of the hole machining axial force under the aforementioned influencing elements, as well as the impacts of feed speed, hole diameter, and processing method, further demonstrates the accuracy of the geometric model, the variation law of the delamination force and fiber layer displacement in the test agrees with the derivation above.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-022-10645-x</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9320-4461</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2023-03, Vol.125 (1-2), p.417-433 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2775130222 |
source | SpringerLink Journals - AutoHoldings |
subjects | Advanced manufacturing technologies Aramid fiber composites Aramid fiber reinforced plastics Axial forces CAE) and Design Computer simulation Computer-Aided Engineering (CAD Deformation Delamination Diameters Displacement Drilling Efficiency Elastic deformation Engineering Failure Feed rate Fiber reinforced polymers Finite element method Geometric accuracy Industrial and Production Engineering Mathematical models Mechanical Engineering Media Management Milling (machining) Original Article Polymers Simulation Strain hardening Thickness |
title | Simulation analysis of aramid fiber reinforced polymer hole machining and experimental study on delamination mechanism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T15%3A44%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20analysis%20of%20aramid%20fiber%20reinforced%20polymer%20hole%20machining%20and%20experimental%20study%20on%20delamination%20mechanism&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Shi,%20Wentian&rft.date=2023-03-01&rft.volume=125&rft.issue=1-2&rft.spage=417&rft.epage=433&rft.pages=417-433&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-022-10645-x&rft_dat=%3Cproquest_cross%3E2775130222%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2775130222&rft_id=info:pmid/&rfr_iscdi=true |