Simulation analysis of aramid fiber reinforced polymer hole machining and experimental study on delamination mechanism

The AFRP (aramid fiber reinforced polymer) material’s finite element model is built using ABAQUS software for resin and aramid fiber based on the Johnson–Cook failure and Hashin failure criterion. The effects of feed rate and hole diameter on axial force and fiber layer displacement are determined b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2023-03, Vol.125 (1-2), p.417-433
Hauptverfasser: Shi, Wentian, Yan, Tianming, Liu, Yude, Wang, Lin, Dong, Lu, Xie, Chuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 433
container_issue 1-2
container_start_page 417
container_title International journal of advanced manufacturing technology
container_volume 125
creator Shi, Wentian
Yan, Tianming
Liu, Yude
Wang, Lin
Dong, Lu
Xie, Chuan
description The AFRP (aramid fiber reinforced polymer) material’s finite element model is built using ABAQUS software for resin and aramid fiber based on the Johnson–Cook failure and Hashin failure criterion. The effects of feed rate and hole diameter on axial force and fiber layer displacement are determined by the simulation study of milling holes. It was possible to decide on the delamination force and produce the fiber layer displacement curve by measuring the delamination force of aramid fiber composites with various layer thicknesses and hole diameters. Elastic deformation, linear loading delamination, severe failure delamination, and stability failure delamination were classified into four phases. The geometric model for Tool-AFRP hole machining is created. The functional connection between delamination force and fiber layer displacement is obtained from the model’s axial force production process. The Kistler9129AA dynamometer is used to conduct the hole machining experiment. Analysis of the variation law of the hole machining axial force under the aforementioned influencing elements, as well as the impacts of feed speed, hole diameter, and processing method, further demonstrates the accuracy of the geometric model, the variation law of the delamination force and fiber layer displacement in the test agrees with the derivation above.
doi_str_mv 10.1007/s00170-022-10645-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2775130222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2775130222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-5e34795419c64abdb5334b380301af306eb2194e39684c2465bbd9abd0a23ea03</originalsourceid><addsrcrecordid>eNp9kM1KxDAYRYMoOI6-gKuA62j-mrZLGfwDwYW6Dmn7dSZDm9SklenbG63gzlXg45wb7kXoktFrRml-EyllOSWUc8Kokhk5HKEVk0IQQVl2jFaUq4KIXBWn6CzGfcIVU8UKfb7afurMaL3DxplujjZi32ITTG8b3NoKAg5gXetDDQ0efDf36bTzHeDe1DvrrNsmtcFwGCDYHtxoOhzHqZlxCm2gS0lu-aGHemecjf05OmlNF-Hi912j9_u7t80jeX55eNrcPpOay3IkGQiZl5lkZa2kqZoqE0JWoqCplWkFVVBxVkoQpSpkUlRWVU2ZQGq4AEPFGl0tuUPwHxPEUe_9FFLPqHmeZ0ykxXii-ELVwccYoNVDKmLCrBnV3_vqZV-daP2zrz4kSSxSTLDbQviL_sf6AnC-gEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2775130222</pqid></control><display><type>article</type><title>Simulation analysis of aramid fiber reinforced polymer hole machining and experimental study on delamination mechanism</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shi, Wentian ; Yan, Tianming ; Liu, Yude ; Wang, Lin ; Dong, Lu ; Xie, Chuan</creator><creatorcontrib>Shi, Wentian ; Yan, Tianming ; Liu, Yude ; Wang, Lin ; Dong, Lu ; Xie, Chuan</creatorcontrib><description>The AFRP (aramid fiber reinforced polymer) material’s finite element model is built using ABAQUS software for resin and aramid fiber based on the Johnson–Cook failure and Hashin failure criterion. The effects of feed rate and hole diameter on axial force and fiber layer displacement are determined by the simulation study of milling holes. It was possible to decide on the delamination force and produce the fiber layer displacement curve by measuring the delamination force of aramid fiber composites with various layer thicknesses and hole diameters. Elastic deformation, linear loading delamination, severe failure delamination, and stability failure delamination were classified into four phases. The geometric model for Tool-AFRP hole machining is created. The functional connection between delamination force and fiber layer displacement is obtained from the model’s axial force production process. The Kistler9129AA dynamometer is used to conduct the hole machining experiment. Analysis of the variation law of the hole machining axial force under the aforementioned influencing elements, as well as the impacts of feed speed, hole diameter, and processing method, further demonstrates the accuracy of the geometric model, the variation law of the delamination force and fiber layer displacement in the test agrees with the derivation above.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-022-10645-x</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Advanced manufacturing technologies ; Aramid fiber composites ; Aramid fiber reinforced plastics ; Axial forces ; CAE) and Design ; Computer simulation ; Computer-Aided Engineering (CAD ; Deformation ; Delamination ; Diameters ; Displacement ; Drilling ; Efficiency ; Elastic deformation ; Engineering ; Failure ; Feed rate ; Fiber reinforced polymers ; Finite element method ; Geometric accuracy ; Industrial and Production Engineering ; Mathematical models ; Mechanical Engineering ; Media Management ; Milling (machining) ; Original Article ; Polymers ; Simulation ; Strain hardening ; Thickness</subject><ispartof>International journal of advanced manufacturing technology, 2023-03, Vol.125 (1-2), p.417-433</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-5e34795419c64abdb5334b380301af306eb2194e39684c2465bbd9abd0a23ea03</citedby><cites>FETCH-LOGICAL-c249t-5e34795419c64abdb5334b380301af306eb2194e39684c2465bbd9abd0a23ea03</cites><orcidid>0000-0002-9320-4461</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-022-10645-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-022-10645-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Shi, Wentian</creatorcontrib><creatorcontrib>Yan, Tianming</creatorcontrib><creatorcontrib>Liu, Yude</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Dong, Lu</creatorcontrib><creatorcontrib>Xie, Chuan</creatorcontrib><title>Simulation analysis of aramid fiber reinforced polymer hole machining and experimental study on delamination mechanism</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>The AFRP (aramid fiber reinforced polymer) material’s finite element model is built using ABAQUS software for resin and aramid fiber based on the Johnson–Cook failure and Hashin failure criterion. The effects of feed rate and hole diameter on axial force and fiber layer displacement are determined by the simulation study of milling holes. It was possible to decide on the delamination force and produce the fiber layer displacement curve by measuring the delamination force of aramid fiber composites with various layer thicknesses and hole diameters. Elastic deformation, linear loading delamination, severe failure delamination, and stability failure delamination were classified into four phases. The geometric model for Tool-AFRP hole machining is created. The functional connection between delamination force and fiber layer displacement is obtained from the model’s axial force production process. The Kistler9129AA dynamometer is used to conduct the hole machining experiment. Analysis of the variation law of the hole machining axial force under the aforementioned influencing elements, as well as the impacts of feed speed, hole diameter, and processing method, further demonstrates the accuracy of the geometric model, the variation law of the delamination force and fiber layer displacement in the test agrees with the derivation above.</description><subject>Advanced manufacturing technologies</subject><subject>Aramid fiber composites</subject><subject>Aramid fiber reinforced plastics</subject><subject>Axial forces</subject><subject>CAE) and Design</subject><subject>Computer simulation</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Deformation</subject><subject>Delamination</subject><subject>Diameters</subject><subject>Displacement</subject><subject>Drilling</subject><subject>Efficiency</subject><subject>Elastic deformation</subject><subject>Engineering</subject><subject>Failure</subject><subject>Feed rate</subject><subject>Fiber reinforced polymers</subject><subject>Finite element method</subject><subject>Geometric accuracy</subject><subject>Industrial and Production Engineering</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Milling (machining)</subject><subject>Original Article</subject><subject>Polymers</subject><subject>Simulation</subject><subject>Strain hardening</subject><subject>Thickness</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kM1KxDAYRYMoOI6-gKuA62j-mrZLGfwDwYW6Dmn7dSZDm9SklenbG63gzlXg45wb7kXoktFrRml-EyllOSWUc8Kokhk5HKEVk0IQQVl2jFaUq4KIXBWn6CzGfcIVU8UKfb7afurMaL3DxplujjZi32ITTG8b3NoKAg5gXetDDQ0efDf36bTzHeDe1DvrrNsmtcFwGCDYHtxoOhzHqZlxCm2gS0lu-aGHemecjf05OmlNF-Hi912j9_u7t80jeX55eNrcPpOay3IkGQiZl5lkZa2kqZoqE0JWoqCplWkFVVBxVkoQpSpkUlRWVU2ZQGq4AEPFGl0tuUPwHxPEUe_9FFLPqHmeZ0ykxXii-ELVwccYoNVDKmLCrBnV3_vqZV-daP2zrz4kSSxSTLDbQviL_sf6AnC-gEw</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Shi, Wentian</creator><creator>Yan, Tianming</creator><creator>Liu, Yude</creator><creator>Wang, Lin</creator><creator>Dong, Lu</creator><creator>Xie, Chuan</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-9320-4461</orcidid></search><sort><creationdate>20230301</creationdate><title>Simulation analysis of aramid fiber reinforced polymer hole machining and experimental study on delamination mechanism</title><author>Shi, Wentian ; Yan, Tianming ; Liu, Yude ; Wang, Lin ; Dong, Lu ; Xie, Chuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-5e34795419c64abdb5334b380301af306eb2194e39684c2465bbd9abd0a23ea03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Advanced manufacturing technologies</topic><topic>Aramid fiber composites</topic><topic>Aramid fiber reinforced plastics</topic><topic>Axial forces</topic><topic>CAE) and Design</topic><topic>Computer simulation</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Deformation</topic><topic>Delamination</topic><topic>Diameters</topic><topic>Displacement</topic><topic>Drilling</topic><topic>Efficiency</topic><topic>Elastic deformation</topic><topic>Engineering</topic><topic>Failure</topic><topic>Feed rate</topic><topic>Fiber reinforced polymers</topic><topic>Finite element method</topic><topic>Geometric accuracy</topic><topic>Industrial and Production Engineering</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Milling (machining)</topic><topic>Original Article</topic><topic>Polymers</topic><topic>Simulation</topic><topic>Strain hardening</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Wentian</creatorcontrib><creatorcontrib>Yan, Tianming</creatorcontrib><creatorcontrib>Liu, Yude</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Dong, Lu</creatorcontrib><creatorcontrib>Xie, Chuan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Wentian</au><au>Yan, Tianming</au><au>Liu, Yude</au><au>Wang, Lin</au><au>Dong, Lu</au><au>Xie, Chuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation analysis of aramid fiber reinforced polymer hole machining and experimental study on delamination mechanism</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>125</volume><issue>1-2</issue><spage>417</spage><epage>433</epage><pages>417-433</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>The AFRP (aramid fiber reinforced polymer) material’s finite element model is built using ABAQUS software for resin and aramid fiber based on the Johnson–Cook failure and Hashin failure criterion. The effects of feed rate and hole diameter on axial force and fiber layer displacement are determined by the simulation study of milling holes. It was possible to decide on the delamination force and produce the fiber layer displacement curve by measuring the delamination force of aramid fiber composites with various layer thicknesses and hole diameters. Elastic deformation, linear loading delamination, severe failure delamination, and stability failure delamination were classified into four phases. The geometric model for Tool-AFRP hole machining is created. The functional connection between delamination force and fiber layer displacement is obtained from the model’s axial force production process. The Kistler9129AA dynamometer is used to conduct the hole machining experiment. Analysis of the variation law of the hole machining axial force under the aforementioned influencing elements, as well as the impacts of feed speed, hole diameter, and processing method, further demonstrates the accuracy of the geometric model, the variation law of the delamination force and fiber layer displacement in the test agrees with the derivation above.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-022-10645-x</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9320-4461</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2023-03, Vol.125 (1-2), p.417-433
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2775130222
source SpringerLink Journals - AutoHoldings
subjects Advanced manufacturing technologies
Aramid fiber composites
Aramid fiber reinforced plastics
Axial forces
CAE) and Design
Computer simulation
Computer-Aided Engineering (CAD
Deformation
Delamination
Diameters
Displacement
Drilling
Efficiency
Elastic deformation
Engineering
Failure
Feed rate
Fiber reinforced polymers
Finite element method
Geometric accuracy
Industrial and Production Engineering
Mathematical models
Mechanical Engineering
Media Management
Milling (machining)
Original Article
Polymers
Simulation
Strain hardening
Thickness
title Simulation analysis of aramid fiber reinforced polymer hole machining and experimental study on delamination mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T15%3A44%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20analysis%20of%20aramid%20fiber%20reinforced%20polymer%20hole%20machining%20and%20experimental%20study%20on%20delamination%20mechanism&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Shi,%20Wentian&rft.date=2023-03-01&rft.volume=125&rft.issue=1-2&rft.spage=417&rft.epage=433&rft.pages=417-433&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-022-10645-x&rft_dat=%3Cproquest_cross%3E2775130222%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2775130222&rft_id=info:pmid/&rfr_iscdi=true