Robust and Scalable Bayesian Online Changepoint Detection

This paper proposes an online, provably robust, and scalable Bayesian approach for changepoint detection. The resulting algorithm has key advantages over previous work: it provides provable robustness by leveraging the generalised Bayesian perspective, and also addresses the scalability issues of pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-05
Hauptverfasser: Altamirano, Matias, François-Xavier Briol, Knoblauch, Jeremias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Altamirano, Matias
François-Xavier Briol
Knoblauch, Jeremias
description This paper proposes an online, provably robust, and scalable Bayesian approach for changepoint detection. The resulting algorithm has key advantages over previous work: it provides provable robustness by leveraging the generalised Bayesian perspective, and also addresses the scalability issues of previous attempts. Specifically, the proposed generalised Bayesian formalism leads to conjugate posteriors whose parameters are available in closed form by leveraging diffusion score matching. The resulting algorithm is exact, can be updated through simple algebra, and is more than 10 times faster than its closest competitor.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2775126785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2775126785</sourcerecordid><originalsourceid>FETCH-proquest_journals_27751267853</originalsourceid><addsrcrecordid>eNqNjbEKwjAUAIMgWLT_EHAutElj6mpV3AR1L6_1qSnhpTbJ4N_bwQ9wuuEObsYSIWWRVaUQC5Z63-d5LjZaKCUTtr24NvrAge782oGF1iLfwQe9AeJnsoaQ1y-gJw7OUOB7DNgF42jF5g-wHtMfl2x9PNzqUzaM7h3Rh6Z3caRJNUJrVUzLSsn_qi9hWjZL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2775126785</pqid></control><display><type>article</type><title>Robust and Scalable Bayesian Online Changepoint Detection</title><source>Free E- Journals</source><creator>Altamirano, Matias ; François-Xavier Briol ; Knoblauch, Jeremias</creator><creatorcontrib>Altamirano, Matias ; François-Xavier Briol ; Knoblauch, Jeremias</creatorcontrib><description>This paper proposes an online, provably robust, and scalable Bayesian approach for changepoint detection. The resulting algorithm has key advantages over previous work: it provides provable robustness by leveraging the generalised Bayesian perspective, and also addresses the scalability issues of previous attempts. Specifically, the proposed generalised Bayesian formalism leads to conjugate posteriors whose parameters are available in closed form by leveraging diffusion score matching. The resulting algorithm is exact, can be updated through simple algebra, and is more than 10 times faster than its closest competitor.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Bayesian analysis ; Mathematical analysis ; Robustness</subject><ispartof>arXiv.org, 2023-05</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Altamirano, Matias</creatorcontrib><creatorcontrib>François-Xavier Briol</creatorcontrib><creatorcontrib>Knoblauch, Jeremias</creatorcontrib><title>Robust and Scalable Bayesian Online Changepoint Detection</title><title>arXiv.org</title><description>This paper proposes an online, provably robust, and scalable Bayesian approach for changepoint detection. The resulting algorithm has key advantages over previous work: it provides provable robustness by leveraging the generalised Bayesian perspective, and also addresses the scalability issues of previous attempts. Specifically, the proposed generalised Bayesian formalism leads to conjugate posteriors whose parameters are available in closed form by leveraging diffusion score matching. The resulting algorithm is exact, can be updated through simple algebra, and is more than 10 times faster than its closest competitor.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Mathematical analysis</subject><subject>Robustness</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjbEKwjAUAIMgWLT_EHAutElj6mpV3AR1L6_1qSnhpTbJ4N_bwQ9wuuEObsYSIWWRVaUQC5Z63-d5LjZaKCUTtr24NvrAge782oGF1iLfwQe9AeJnsoaQ1y-gJw7OUOB7DNgF42jF5g-wHtMfl2x9PNzqUzaM7h3Rh6Z3caRJNUJrVUzLSsn_qi9hWjZL</recordid><startdate>20230512</startdate><enddate>20230512</enddate><creator>Altamirano, Matias</creator><creator>François-Xavier Briol</creator><creator>Knoblauch, Jeremias</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230512</creationdate><title>Robust and Scalable Bayesian Online Changepoint Detection</title><author>Altamirano, Matias ; François-Xavier Briol ; Knoblauch, Jeremias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27751267853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Mathematical analysis</topic><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Altamirano, Matias</creatorcontrib><creatorcontrib>François-Xavier Briol</creatorcontrib><creatorcontrib>Knoblauch, Jeremias</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Altamirano, Matias</au><au>François-Xavier Briol</au><au>Knoblauch, Jeremias</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Robust and Scalable Bayesian Online Changepoint Detection</atitle><jtitle>arXiv.org</jtitle><date>2023-05-12</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>This paper proposes an online, provably robust, and scalable Bayesian approach for changepoint detection. The resulting algorithm has key advantages over previous work: it provides provable robustness by leveraging the generalised Bayesian perspective, and also addresses the scalability issues of previous attempts. Specifically, the proposed generalised Bayesian formalism leads to conjugate posteriors whose parameters are available in closed form by leveraging diffusion score matching. The resulting algorithm is exact, can be updated through simple algebra, and is more than 10 times faster than its closest competitor.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2775126785
source Free E- Journals
subjects Algorithms
Bayesian analysis
Mathematical analysis
Robustness
title Robust and Scalable Bayesian Online Changepoint Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T05%3A09%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Robust%20and%20Scalable%20Bayesian%20Online%20Changepoint%20Detection&rft.jtitle=arXiv.org&rft.au=Altamirano,%20Matias&rft.date=2023-05-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2775126785%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2775126785&rft_id=info:pmid/&rfr_iscdi=true