Raman detection system for in situ oxidation and ablation analysis in hypersonic wind tunnel

We have developed a system for remote Raman spectra detection in hypersonic wind tunnel, which can be used in extreme environments such as ultra‐high temperature, high pressure, and complex airflow to measure in situ Raman spectra of ceramic matrix composites during oxidation, phase transformation o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Raman spectroscopy 2023-02, Vol.54 (2), p.201-208
Hauptverfasser: He, Kang, Li, Quanshui, Lu, Yanzhen, Wang, Yuhang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 208
container_issue 2
container_start_page 201
container_title Journal of Raman spectroscopy
container_volume 54
creator He, Kang
Li, Quanshui
Lu, Yanzhen
Wang, Yuhang
description We have developed a system for remote Raman spectra detection in hypersonic wind tunnel, which can be used in extreme environments such as ultra‐high temperature, high pressure, and complex airflow to measure in situ Raman spectra of ceramic matrix composites during oxidation, phase transformation or ablation. The designed system avoids stray light generated by windows and airflow through oblique incidence of excitation light. The time‐resolved method combined with pulsed laser and intensified charge‐coupled device (ICCD) was used to reduce the thermal emission background. An optical structure design based on fiber bundle is adopted to suppress the influence of aero‐optical effects and mechanical vibration on Raman spectrum acquisition. We demonstrated the feasibility of in situ Raman spectra detection in a Mach 5 combustion wind tunnel system. The design of anti‐interference prevents Raman spectra intensity from the influence of wind tunnel testing conditions. A system for remote Raman spectra detection in hypersonic wind tunnel was developed, which can be used in extreme environments such as ultra‐high temperature, high pressure, and complex airflow to measure in‐situ Raman spectra of ceramic matrix composites during oxidation, phase transformation, or ablation.
doi_str_mv 10.1002/jrs.6469
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2775123192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2775123192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2549-7cee5d45c22f77d07c08e7e872641b6fce32a9d21968dc56bc6400898be910f53</originalsourceid><addsrcrecordid>eNp10F1LwzAUBuAgCs4p-BMK3njTeZI2SXMpw08GwtQ7IaTpKWZ0zUxaZv-93aaXXh1ezsPh8BJySWFGAdjNKsSZyIU6IhMKSqY55_yYTCCTMoW8EKfkLMYVACgl6IR8LM3atEmFHdrO-TaJQ-xwndQ-JG5MrusT_-0qs1-atkpM2fwF0wzRxZ37HDYYom-dTbZuRF3fttick5PaNBEvfueUvN_fvc0f08XLw9P8dpFaxnOVSovIq5xbxmopK5AWCpRYSCZyWoraYsaMqhhVoqgsF6UVOUChihIVhZpnU3J1uLsJ_qvH2OmV78P4XtRMSk5ZRhUb1fVB2eBjDFjrTXBrEwZNQe-602N3etfdSNMD3boGh3-dfl6-7v0PiWdw0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2775123192</pqid></control><display><type>article</type><title>Raman detection system for in situ oxidation and ablation analysis in hypersonic wind tunnel</title><source>Wiley Online Library All Journals</source><creator>He, Kang ; Li, Quanshui ; Lu, Yanzhen ; Wang, Yuhang</creator><creatorcontrib>He, Kang ; Li, Quanshui ; Lu, Yanzhen ; Wang, Yuhang</creatorcontrib><description>We have developed a system for remote Raman spectra detection in hypersonic wind tunnel, which can be used in extreme environments such as ultra‐high temperature, high pressure, and complex airflow to measure in situ Raman spectra of ceramic matrix composites during oxidation, phase transformation or ablation. The designed system avoids stray light generated by windows and airflow through oblique incidence of excitation light. The time‐resolved method combined with pulsed laser and intensified charge‐coupled device (ICCD) was used to reduce the thermal emission background. An optical structure design based on fiber bundle is adopted to suppress the influence of aero‐optical effects and mechanical vibration on Raman spectrum acquisition. We demonstrated the feasibility of in situ Raman spectra detection in a Mach 5 combustion wind tunnel system. The design of anti‐interference prevents Raman spectra intensity from the influence of wind tunnel testing conditions. A system for remote Raman spectra detection in hypersonic wind tunnel was developed, which can be used in extreme environments such as ultra‐high temperature, high pressure, and complex airflow to measure in‐situ Raman spectra of ceramic matrix composites during oxidation, phase transformation, or ablation.</description><identifier>ISSN: 0377-0486</identifier><identifier>EISSN: 1097-4555</identifier><identifier>DOI: 10.1002/jrs.6469</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Ablation ; Air flow ; Ceramic matrix composites ; Combustion wind tunnels ; Emissions control ; Extreme environments ; High pressure ; High temperature ; Hypersonic wind tunnels ; Oxidation ; Particulate composites ; Phase transitions ; Pulsed lasers ; Raman spectra ; Raman spectroscopy ; system design ; Thermal emission ; ultra‐high temperature composites ; Vibration ; Wind effects ; wind tunnel ; Wind tunnel testing ; Wind tunnels</subject><ispartof>Journal of Raman spectroscopy, 2023-02, Vol.54 (2), p.201-208</ispartof><rights>2022 John Wiley &amp; Sons Ltd.</rights><rights>2023 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2549-7cee5d45c22f77d07c08e7e872641b6fce32a9d21968dc56bc6400898be910f53</cites><orcidid>0000-0003-0836-2471</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjrs.6469$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjrs.6469$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>He, Kang</creatorcontrib><creatorcontrib>Li, Quanshui</creatorcontrib><creatorcontrib>Lu, Yanzhen</creatorcontrib><creatorcontrib>Wang, Yuhang</creatorcontrib><title>Raman detection system for in situ oxidation and ablation analysis in hypersonic wind tunnel</title><title>Journal of Raman spectroscopy</title><description>We have developed a system for remote Raman spectra detection in hypersonic wind tunnel, which can be used in extreme environments such as ultra‐high temperature, high pressure, and complex airflow to measure in situ Raman spectra of ceramic matrix composites during oxidation, phase transformation or ablation. The designed system avoids stray light generated by windows and airflow through oblique incidence of excitation light. The time‐resolved method combined with pulsed laser and intensified charge‐coupled device (ICCD) was used to reduce the thermal emission background. An optical structure design based on fiber bundle is adopted to suppress the influence of aero‐optical effects and mechanical vibration on Raman spectrum acquisition. We demonstrated the feasibility of in situ Raman spectra detection in a Mach 5 combustion wind tunnel system. The design of anti‐interference prevents Raman spectra intensity from the influence of wind tunnel testing conditions. A system for remote Raman spectra detection in hypersonic wind tunnel was developed, which can be used in extreme environments such as ultra‐high temperature, high pressure, and complex airflow to measure in‐situ Raman spectra of ceramic matrix composites during oxidation, phase transformation, or ablation.</description><subject>Ablation</subject><subject>Air flow</subject><subject>Ceramic matrix composites</subject><subject>Combustion wind tunnels</subject><subject>Emissions control</subject><subject>Extreme environments</subject><subject>High pressure</subject><subject>High temperature</subject><subject>Hypersonic wind tunnels</subject><subject>Oxidation</subject><subject>Particulate composites</subject><subject>Phase transitions</subject><subject>Pulsed lasers</subject><subject>Raman spectra</subject><subject>Raman spectroscopy</subject><subject>system design</subject><subject>Thermal emission</subject><subject>ultra‐high temperature composites</subject><subject>Vibration</subject><subject>Wind effects</subject><subject>wind tunnel</subject><subject>Wind tunnel testing</subject><subject>Wind tunnels</subject><issn>0377-0486</issn><issn>1097-4555</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp10F1LwzAUBuAgCs4p-BMK3njTeZI2SXMpw08GwtQ7IaTpKWZ0zUxaZv-93aaXXh1ezsPh8BJySWFGAdjNKsSZyIU6IhMKSqY55_yYTCCTMoW8EKfkLMYVACgl6IR8LM3atEmFHdrO-TaJQ-xwndQ-JG5MrusT_-0qs1-atkpM2fwF0wzRxZ37HDYYom-dTbZuRF3fttick5PaNBEvfueUvN_fvc0f08XLw9P8dpFaxnOVSovIq5xbxmopK5AWCpRYSCZyWoraYsaMqhhVoqgsF6UVOUChihIVhZpnU3J1uLsJ_qvH2OmV78P4XtRMSk5ZRhUb1fVB2eBjDFjrTXBrEwZNQe-602N3etfdSNMD3boGh3-dfl6-7v0PiWdw0Q</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>He, Kang</creator><creator>Li, Quanshui</creator><creator>Lu, Yanzhen</creator><creator>Wang, Yuhang</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0003-0836-2471</orcidid></search><sort><creationdate>202302</creationdate><title>Raman detection system for in situ oxidation and ablation analysis in hypersonic wind tunnel</title><author>He, Kang ; Li, Quanshui ; Lu, Yanzhen ; Wang, Yuhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2549-7cee5d45c22f77d07c08e7e872641b6fce32a9d21968dc56bc6400898be910f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ablation</topic><topic>Air flow</topic><topic>Ceramic matrix composites</topic><topic>Combustion wind tunnels</topic><topic>Emissions control</topic><topic>Extreme environments</topic><topic>High pressure</topic><topic>High temperature</topic><topic>Hypersonic wind tunnels</topic><topic>Oxidation</topic><topic>Particulate composites</topic><topic>Phase transitions</topic><topic>Pulsed lasers</topic><topic>Raman spectra</topic><topic>Raman spectroscopy</topic><topic>system design</topic><topic>Thermal emission</topic><topic>ultra‐high temperature composites</topic><topic>Vibration</topic><topic>Wind effects</topic><topic>wind tunnel</topic><topic>Wind tunnel testing</topic><topic>Wind tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Kang</creatorcontrib><creatorcontrib>Li, Quanshui</creatorcontrib><creatorcontrib>Lu, Yanzhen</creatorcontrib><creatorcontrib>Wang, Yuhang</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Journal of Raman spectroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Kang</au><au>Li, Quanshui</au><au>Lu, Yanzhen</au><au>Wang, Yuhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Raman detection system for in situ oxidation and ablation analysis in hypersonic wind tunnel</atitle><jtitle>Journal of Raman spectroscopy</jtitle><date>2023-02</date><risdate>2023</risdate><volume>54</volume><issue>2</issue><spage>201</spage><epage>208</epage><pages>201-208</pages><issn>0377-0486</issn><eissn>1097-4555</eissn><abstract>We have developed a system for remote Raman spectra detection in hypersonic wind tunnel, which can be used in extreme environments such as ultra‐high temperature, high pressure, and complex airflow to measure in situ Raman spectra of ceramic matrix composites during oxidation, phase transformation or ablation. The designed system avoids stray light generated by windows and airflow through oblique incidence of excitation light. The time‐resolved method combined with pulsed laser and intensified charge‐coupled device (ICCD) was used to reduce the thermal emission background. An optical structure design based on fiber bundle is adopted to suppress the influence of aero‐optical effects and mechanical vibration on Raman spectrum acquisition. We demonstrated the feasibility of in situ Raman spectra detection in a Mach 5 combustion wind tunnel system. The design of anti‐interference prevents Raman spectra intensity from the influence of wind tunnel testing conditions. A system for remote Raman spectra detection in hypersonic wind tunnel was developed, which can be used in extreme environments such as ultra‐high temperature, high pressure, and complex airflow to measure in‐situ Raman spectra of ceramic matrix composites during oxidation, phase transformation, or ablation.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jrs.6469</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0836-2471</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0377-0486
ispartof Journal of Raman spectroscopy, 2023-02, Vol.54 (2), p.201-208
issn 0377-0486
1097-4555
language eng
recordid cdi_proquest_journals_2775123192
source Wiley Online Library All Journals
subjects Ablation
Air flow
Ceramic matrix composites
Combustion wind tunnels
Emissions control
Extreme environments
High pressure
High temperature
Hypersonic wind tunnels
Oxidation
Particulate composites
Phase transitions
Pulsed lasers
Raman spectra
Raman spectroscopy
system design
Thermal emission
ultra‐high temperature composites
Vibration
Wind effects
wind tunnel
Wind tunnel testing
Wind tunnels
title Raman detection system for in situ oxidation and ablation analysis in hypersonic wind tunnel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T11%3A57%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Raman%20detection%20system%20for%20in%20situ%20oxidation%20and%20ablation%20analysis%20in%20hypersonic%20wind%20tunnel&rft.jtitle=Journal%20of%20Raman%20spectroscopy&rft.au=He,%20Kang&rft.date=2023-02&rft.volume=54&rft.issue=2&rft.spage=201&rft.epage=208&rft.pages=201-208&rft.issn=0377-0486&rft.eissn=1097-4555&rft_id=info:doi/10.1002/jrs.6469&rft_dat=%3Cproquest_cross%3E2775123192%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2775123192&rft_id=info:pmid/&rfr_iscdi=true