An Energy-Saving Regulation Framework of Central Air Conditioning Based on Cloud–Edge–Device Architecture
As energy plays a fundamental role in our modern life and most of a building’s energy is used for air conditioning, understanding the sustainable regulation theory of central air conditioning remains a significant scientific issue. In view of three shortcomings of existing energy-saving regulation m...
Gespeichert in:
Veröffentlicht in: | Sustainability 2023-01, Vol.15 (3), p.2554 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 2554 |
container_title | Sustainability |
container_volume | 15 |
creator | Luo, Guofu Sun, Tianxing Wang, Haoqi Li, Hao Wang, Jiaqi Miao, Zhuang Si, Honglei Che, Fuliang Liu, Gen |
description | As energy plays a fundamental role in our modern life and most of a building’s energy is used for air conditioning, understanding the sustainable regulation theory of central air conditioning remains a significant scientific issue. In view of three shortcomings of existing energy-saving regulation methods of central air conditioning: (1) few studies on low-latency, high-reliability, and safer energy-saving control operation modes, (2) lack of consideration for human comfort, and (3) insufficient analysis of the comprehensive impact of the human–machine–environment, this paper proposes an energy-saving control framework of central air conditioning based on cloud–edge–device architecture. The framework establishes a prediction model of human comfort based on recurrent neural network. An intelligent energy-saving control strategy is proposed to ensure indoor personnel’s thermal comfort, considering the human–machine–environment factors. This study provides a basis for better understanding the sustainable control theory of building central air conditioning. Finally, the experiment proves that the proposed method can effectively reduce the energy consumption of central air conditioning. Compared with traditional regulation approaches, the proposed real-time control strategy can save up to 91% of energy consumption, depending on the environment, and advance control strategies can save an average of 4%. |
doi_str_mv | 10.3390/su15032554 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2775030531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743494531</galeid><sourcerecordid>A743494531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-ffaa49d7eb9f1c62e5007ab40d7bd3ce3845b01539c760ed8e48177bea3816d43</originalsourceid><addsrcrecordid>eNpVkc1KxDAQx4soKOrFJwh4UqgmTbrZHmtddWFB8ONc0mRao22iSbu6N9_BN_RJzFJBd-Yww_D7zzAzUXRE8BmlGT73A0kxTdKUbUV7CeYkJjjF2__y3ejQ-2ccjFKSkcle1OUGzQy4ZhXfi6U2DbqDZmhFr61BV0508G7dC7I1KsD0TrQo1w4V1ii9RtaCC-FBoYAXrR3U9-fXTDUQwiUstQSUO_mke5D94OAg2qlF6-HwN-5Hj1ezh-ImXtxez4t8EUua8D6uayFYpjhUWU3kJIEUYy4qhhWvFJVApyytMElpJvkEg5oCmxLOKxB0SiaK0f3oeOz76uzbAL4vn-3gTBhZJpyHI-GUkkCdjVQjWii1qW1YUAZX0GlpDdQ61HPOKMvYKDjZEASmh4--EYP35fz-bpM9HVnprPcO6vLV6U64VUlwuX5X-fcu-gNk6ogc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2775030531</pqid></control><display><type>article</type><title>An Energy-Saving Regulation Framework of Central Air Conditioning Based on Cloud–Edge–Device Architecture</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Luo, Guofu ; Sun, Tianxing ; Wang, Haoqi ; Li, Hao ; Wang, Jiaqi ; Miao, Zhuang ; Si, Honglei ; Che, Fuliang ; Liu, Gen</creator><creatorcontrib>Luo, Guofu ; Sun, Tianxing ; Wang, Haoqi ; Li, Hao ; Wang, Jiaqi ; Miao, Zhuang ; Si, Honglei ; Che, Fuliang ; Liu, Gen</creatorcontrib><description>As energy plays a fundamental role in our modern life and most of a building’s energy is used for air conditioning, understanding the sustainable regulation theory of central air conditioning remains a significant scientific issue. In view of three shortcomings of existing energy-saving regulation methods of central air conditioning: (1) few studies on low-latency, high-reliability, and safer energy-saving control operation modes, (2) lack of consideration for human comfort, and (3) insufficient analysis of the comprehensive impact of the human–machine–environment, this paper proposes an energy-saving control framework of central air conditioning based on cloud–edge–device architecture. The framework establishes a prediction model of human comfort based on recurrent neural network. An intelligent energy-saving control strategy is proposed to ensure indoor personnel’s thermal comfort, considering the human–machine–environment factors. This study provides a basis for better understanding the sustainable control theory of building central air conditioning. Finally, the experiment proves that the proposed method can effectively reduce the energy consumption of central air conditioning. Compared with traditional regulation approaches, the proposed real-time control strategy can save up to 91% of energy consumption, depending on the environment, and advance control strategies can save an average of 4%.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su15032554</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Air conditioning ; Air conditioning from central stations ; Analysis ; Artificial intelligence ; Cloud computing ; Collaboration ; Computer architecture ; Control theory ; Cooling ; Energy conservation ; Energy consumption ; Energy development ; Energy industry ; Energy management systems ; Green buildings ; Humidity ; HVAC ; Indoor environments ; Latency ; Laws, regulations and rules ; Network latency ; Neural networks ; Optimization algorithms ; Power ; Prediction models ; Recurrent neural networks ; Sustainability</subject><ispartof>Sustainability, 2023-01, Vol.15 (3), p.2554</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c327t-ffaa49d7eb9f1c62e5007ab40d7bd3ce3845b01539c760ed8e48177bea3816d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Luo, Guofu</creatorcontrib><creatorcontrib>Sun, Tianxing</creatorcontrib><creatorcontrib>Wang, Haoqi</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Wang, Jiaqi</creatorcontrib><creatorcontrib>Miao, Zhuang</creatorcontrib><creatorcontrib>Si, Honglei</creatorcontrib><creatorcontrib>Che, Fuliang</creatorcontrib><creatorcontrib>Liu, Gen</creatorcontrib><title>An Energy-Saving Regulation Framework of Central Air Conditioning Based on Cloud–Edge–Device Architecture</title><title>Sustainability</title><description>As energy plays a fundamental role in our modern life and most of a building’s energy is used for air conditioning, understanding the sustainable regulation theory of central air conditioning remains a significant scientific issue. In view of three shortcomings of existing energy-saving regulation methods of central air conditioning: (1) few studies on low-latency, high-reliability, and safer energy-saving control operation modes, (2) lack of consideration for human comfort, and (3) insufficient analysis of the comprehensive impact of the human–machine–environment, this paper proposes an energy-saving control framework of central air conditioning based on cloud–edge–device architecture. The framework establishes a prediction model of human comfort based on recurrent neural network. An intelligent energy-saving control strategy is proposed to ensure indoor personnel’s thermal comfort, considering the human–machine–environment factors. This study provides a basis for better understanding the sustainable control theory of building central air conditioning. Finally, the experiment proves that the proposed method can effectively reduce the energy consumption of central air conditioning. Compared with traditional regulation approaches, the proposed real-time control strategy can save up to 91% of energy consumption, depending on the environment, and advance control strategies can save an average of 4%.</description><subject>Air conditioning</subject><subject>Air conditioning from central stations</subject><subject>Analysis</subject><subject>Artificial intelligence</subject><subject>Cloud computing</subject><subject>Collaboration</subject><subject>Computer architecture</subject><subject>Control theory</subject><subject>Cooling</subject><subject>Energy conservation</subject><subject>Energy consumption</subject><subject>Energy development</subject><subject>Energy industry</subject><subject>Energy management systems</subject><subject>Green buildings</subject><subject>Humidity</subject><subject>HVAC</subject><subject>Indoor environments</subject><subject>Latency</subject><subject>Laws, regulations and rules</subject><subject>Network latency</subject><subject>Neural networks</subject><subject>Optimization algorithms</subject><subject>Power</subject><subject>Prediction models</subject><subject>Recurrent neural networks</subject><subject>Sustainability</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkc1KxDAQx4soKOrFJwh4UqgmTbrZHmtddWFB8ONc0mRao22iSbu6N9_BN_RJzFJBd-Yww_D7zzAzUXRE8BmlGT73A0kxTdKUbUV7CeYkJjjF2__y3ejQ-2ccjFKSkcle1OUGzQy4ZhXfi6U2DbqDZmhFr61BV0508G7dC7I1KsD0TrQo1w4V1ii9RtaCC-FBoYAXrR3U9-fXTDUQwiUstQSUO_mke5D94OAg2qlF6-HwN-5Hj1ezh-ImXtxez4t8EUua8D6uayFYpjhUWU3kJIEUYy4qhhWvFJVApyytMElpJvkEg5oCmxLOKxB0SiaK0f3oeOz76uzbAL4vn-3gTBhZJpyHI-GUkkCdjVQjWii1qW1YUAZX0GlpDdQ61HPOKMvYKDjZEASmh4--EYP35fz-bpM9HVnprPcO6vLV6U64VUlwuX5X-fcu-gNk6ogc</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Luo, Guofu</creator><creator>Sun, Tianxing</creator><creator>Wang, Haoqi</creator><creator>Li, Hao</creator><creator>Wang, Jiaqi</creator><creator>Miao, Zhuang</creator><creator>Si, Honglei</creator><creator>Che, Fuliang</creator><creator>Liu, Gen</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20230101</creationdate><title>An Energy-Saving Regulation Framework of Central Air Conditioning Based on Cloud–Edge–Device Architecture</title><author>Luo, Guofu ; Sun, Tianxing ; Wang, Haoqi ; Li, Hao ; Wang, Jiaqi ; Miao, Zhuang ; Si, Honglei ; Che, Fuliang ; Liu, Gen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-ffaa49d7eb9f1c62e5007ab40d7bd3ce3845b01539c760ed8e48177bea3816d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Air conditioning</topic><topic>Air conditioning from central stations</topic><topic>Analysis</topic><topic>Artificial intelligence</topic><topic>Cloud computing</topic><topic>Collaboration</topic><topic>Computer architecture</topic><topic>Control theory</topic><topic>Cooling</topic><topic>Energy conservation</topic><topic>Energy consumption</topic><topic>Energy development</topic><topic>Energy industry</topic><topic>Energy management systems</topic><topic>Green buildings</topic><topic>Humidity</topic><topic>HVAC</topic><topic>Indoor environments</topic><topic>Latency</topic><topic>Laws, regulations and rules</topic><topic>Network latency</topic><topic>Neural networks</topic><topic>Optimization algorithms</topic><topic>Power</topic><topic>Prediction models</topic><topic>Recurrent neural networks</topic><topic>Sustainability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Guofu</creatorcontrib><creatorcontrib>Sun, Tianxing</creatorcontrib><creatorcontrib>Wang, Haoqi</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Wang, Jiaqi</creatorcontrib><creatorcontrib>Miao, Zhuang</creatorcontrib><creatorcontrib>Si, Honglei</creatorcontrib><creatorcontrib>Che, Fuliang</creatorcontrib><creatorcontrib>Liu, Gen</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Guofu</au><au>Sun, Tianxing</au><au>Wang, Haoqi</au><au>Li, Hao</au><au>Wang, Jiaqi</au><au>Miao, Zhuang</au><au>Si, Honglei</au><au>Che, Fuliang</au><au>Liu, Gen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Energy-Saving Regulation Framework of Central Air Conditioning Based on Cloud–Edge–Device Architecture</atitle><jtitle>Sustainability</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>15</volume><issue>3</issue><spage>2554</spage><pages>2554-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>As energy plays a fundamental role in our modern life and most of a building’s energy is used for air conditioning, understanding the sustainable regulation theory of central air conditioning remains a significant scientific issue. In view of three shortcomings of existing energy-saving regulation methods of central air conditioning: (1) few studies on low-latency, high-reliability, and safer energy-saving control operation modes, (2) lack of consideration for human comfort, and (3) insufficient analysis of the comprehensive impact of the human–machine–environment, this paper proposes an energy-saving control framework of central air conditioning based on cloud–edge–device architecture. The framework establishes a prediction model of human comfort based on recurrent neural network. An intelligent energy-saving control strategy is proposed to ensure indoor personnel’s thermal comfort, considering the human–machine–environment factors. This study provides a basis for better understanding the sustainable control theory of building central air conditioning. Finally, the experiment proves that the proposed method can effectively reduce the energy consumption of central air conditioning. Compared with traditional regulation approaches, the proposed real-time control strategy can save up to 91% of energy consumption, depending on the environment, and advance control strategies can save an average of 4%.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su15032554</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2023-01, Vol.15 (3), p.2554 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_proquest_journals_2775030531 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Air conditioning Air conditioning from central stations Analysis Artificial intelligence Cloud computing Collaboration Computer architecture Control theory Cooling Energy conservation Energy consumption Energy development Energy industry Energy management systems Green buildings Humidity HVAC Indoor environments Latency Laws, regulations and rules Network latency Neural networks Optimization algorithms Power Prediction models Recurrent neural networks Sustainability |
title | An Energy-Saving Regulation Framework of Central Air Conditioning Based on Cloud–Edge–Device Architecture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A07%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Energy-Saving%20Regulation%20Framework%20of%20Central%20Air%20Conditioning%20Based%20on%20Cloud%E2%80%93Edge%E2%80%93Device%20Architecture&rft.jtitle=Sustainability&rft.au=Luo,%20Guofu&rft.date=2023-01-01&rft.volume=15&rft.issue=3&rft.spage=2554&rft.pages=2554-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su15032554&rft_dat=%3Cgale_proqu%3EA743494531%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2775030531&rft_id=info:pmid/&rft_galeid=A743494531&rfr_iscdi=true |