An Energy-Saving Regulation Framework of Central Air Conditioning Based on Cloud–Edge–Device Architecture

As energy plays a fundamental role in our modern life and most of a building’s energy is used for air conditioning, understanding the sustainable regulation theory of central air conditioning remains a significant scientific issue. In view of three shortcomings of existing energy-saving regulation m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2023-01, Vol.15 (3), p.2554
Hauptverfasser: Luo, Guofu, Sun, Tianxing, Wang, Haoqi, Li, Hao, Wang, Jiaqi, Miao, Zhuang, Si, Honglei, Che, Fuliang, Liu, Gen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 2554
container_title Sustainability
container_volume 15
creator Luo, Guofu
Sun, Tianxing
Wang, Haoqi
Li, Hao
Wang, Jiaqi
Miao, Zhuang
Si, Honglei
Che, Fuliang
Liu, Gen
description As energy plays a fundamental role in our modern life and most of a building’s energy is used for air conditioning, understanding the sustainable regulation theory of central air conditioning remains a significant scientific issue. In view of three shortcomings of existing energy-saving regulation methods of central air conditioning: (1) few studies on low-latency, high-reliability, and safer energy-saving control operation modes, (2) lack of consideration for human comfort, and (3) insufficient analysis of the comprehensive impact of the human–machine–environment, this paper proposes an energy-saving control framework of central air conditioning based on cloud–edge–device architecture. The framework establishes a prediction model of human comfort based on recurrent neural network. An intelligent energy-saving control strategy is proposed to ensure indoor personnel’s thermal comfort, considering the human–machine–environment factors. This study provides a basis for better understanding the sustainable control theory of building central air conditioning. Finally, the experiment proves that the proposed method can effectively reduce the energy consumption of central air conditioning. Compared with traditional regulation approaches, the proposed real-time control strategy can save up to 91% of energy consumption, depending on the environment, and advance control strategies can save an average of 4%.
doi_str_mv 10.3390/su15032554
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2775030531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743494531</galeid><sourcerecordid>A743494531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-ffaa49d7eb9f1c62e5007ab40d7bd3ce3845b01539c760ed8e48177bea3816d43</originalsourceid><addsrcrecordid>eNpVkc1KxDAQx4soKOrFJwh4UqgmTbrZHmtddWFB8ONc0mRao22iSbu6N9_BN_RJzFJBd-Yww_D7zzAzUXRE8BmlGT73A0kxTdKUbUV7CeYkJjjF2__y3ejQ-2ccjFKSkcle1OUGzQy4ZhXfi6U2DbqDZmhFr61BV0508G7dC7I1KsD0TrQo1w4V1ii9RtaCC-FBoYAXrR3U9-fXTDUQwiUstQSUO_mke5D94OAg2qlF6-HwN-5Hj1ezh-ImXtxez4t8EUua8D6uayFYpjhUWU3kJIEUYy4qhhWvFJVApyytMElpJvkEg5oCmxLOKxB0SiaK0f3oeOz76uzbAL4vn-3gTBhZJpyHI-GUkkCdjVQjWii1qW1YUAZX0GlpDdQ61HPOKMvYKDjZEASmh4--EYP35fz-bpM9HVnprPcO6vLV6U64VUlwuX5X-fcu-gNk6ogc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2775030531</pqid></control><display><type>article</type><title>An Energy-Saving Regulation Framework of Central Air Conditioning Based on Cloud–Edge–Device Architecture</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Luo, Guofu ; Sun, Tianxing ; Wang, Haoqi ; Li, Hao ; Wang, Jiaqi ; Miao, Zhuang ; Si, Honglei ; Che, Fuliang ; Liu, Gen</creator><creatorcontrib>Luo, Guofu ; Sun, Tianxing ; Wang, Haoqi ; Li, Hao ; Wang, Jiaqi ; Miao, Zhuang ; Si, Honglei ; Che, Fuliang ; Liu, Gen</creatorcontrib><description>As energy plays a fundamental role in our modern life and most of a building’s energy is used for air conditioning, understanding the sustainable regulation theory of central air conditioning remains a significant scientific issue. In view of three shortcomings of existing energy-saving regulation methods of central air conditioning: (1) few studies on low-latency, high-reliability, and safer energy-saving control operation modes, (2) lack of consideration for human comfort, and (3) insufficient analysis of the comprehensive impact of the human–machine–environment, this paper proposes an energy-saving control framework of central air conditioning based on cloud–edge–device architecture. The framework establishes a prediction model of human comfort based on recurrent neural network. An intelligent energy-saving control strategy is proposed to ensure indoor personnel’s thermal comfort, considering the human–machine–environment factors. This study provides a basis for better understanding the sustainable control theory of building central air conditioning. Finally, the experiment proves that the proposed method can effectively reduce the energy consumption of central air conditioning. Compared with traditional regulation approaches, the proposed real-time control strategy can save up to 91% of energy consumption, depending on the environment, and advance control strategies can save an average of 4%.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su15032554</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Air conditioning ; Air conditioning from central stations ; Analysis ; Artificial intelligence ; Cloud computing ; Collaboration ; Computer architecture ; Control theory ; Cooling ; Energy conservation ; Energy consumption ; Energy development ; Energy industry ; Energy management systems ; Green buildings ; Humidity ; HVAC ; Indoor environments ; Latency ; Laws, regulations and rules ; Network latency ; Neural networks ; Optimization algorithms ; Power ; Prediction models ; Recurrent neural networks ; Sustainability</subject><ispartof>Sustainability, 2023-01, Vol.15 (3), p.2554</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c327t-ffaa49d7eb9f1c62e5007ab40d7bd3ce3845b01539c760ed8e48177bea3816d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Luo, Guofu</creatorcontrib><creatorcontrib>Sun, Tianxing</creatorcontrib><creatorcontrib>Wang, Haoqi</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Wang, Jiaqi</creatorcontrib><creatorcontrib>Miao, Zhuang</creatorcontrib><creatorcontrib>Si, Honglei</creatorcontrib><creatorcontrib>Che, Fuliang</creatorcontrib><creatorcontrib>Liu, Gen</creatorcontrib><title>An Energy-Saving Regulation Framework of Central Air Conditioning Based on Cloud–Edge–Device Architecture</title><title>Sustainability</title><description>As energy plays a fundamental role in our modern life and most of a building’s energy is used for air conditioning, understanding the sustainable regulation theory of central air conditioning remains a significant scientific issue. In view of three shortcomings of existing energy-saving regulation methods of central air conditioning: (1) few studies on low-latency, high-reliability, and safer energy-saving control operation modes, (2) lack of consideration for human comfort, and (3) insufficient analysis of the comprehensive impact of the human–machine–environment, this paper proposes an energy-saving control framework of central air conditioning based on cloud–edge–device architecture. The framework establishes a prediction model of human comfort based on recurrent neural network. An intelligent energy-saving control strategy is proposed to ensure indoor personnel’s thermal comfort, considering the human–machine–environment factors. This study provides a basis for better understanding the sustainable control theory of building central air conditioning. Finally, the experiment proves that the proposed method can effectively reduce the energy consumption of central air conditioning. Compared with traditional regulation approaches, the proposed real-time control strategy can save up to 91% of energy consumption, depending on the environment, and advance control strategies can save an average of 4%.</description><subject>Air conditioning</subject><subject>Air conditioning from central stations</subject><subject>Analysis</subject><subject>Artificial intelligence</subject><subject>Cloud computing</subject><subject>Collaboration</subject><subject>Computer architecture</subject><subject>Control theory</subject><subject>Cooling</subject><subject>Energy conservation</subject><subject>Energy consumption</subject><subject>Energy development</subject><subject>Energy industry</subject><subject>Energy management systems</subject><subject>Green buildings</subject><subject>Humidity</subject><subject>HVAC</subject><subject>Indoor environments</subject><subject>Latency</subject><subject>Laws, regulations and rules</subject><subject>Network latency</subject><subject>Neural networks</subject><subject>Optimization algorithms</subject><subject>Power</subject><subject>Prediction models</subject><subject>Recurrent neural networks</subject><subject>Sustainability</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkc1KxDAQx4soKOrFJwh4UqgmTbrZHmtddWFB8ONc0mRao22iSbu6N9_BN_RJzFJBd-Yww_D7zzAzUXRE8BmlGT73A0kxTdKUbUV7CeYkJjjF2__y3ejQ-2ccjFKSkcle1OUGzQy4ZhXfi6U2DbqDZmhFr61BV0508G7dC7I1KsD0TrQo1w4V1ii9RtaCC-FBoYAXrR3U9-fXTDUQwiUstQSUO_mke5D94OAg2qlF6-HwN-5Hj1ezh-ImXtxez4t8EUua8D6uayFYpjhUWU3kJIEUYy4qhhWvFJVApyytMElpJvkEg5oCmxLOKxB0SiaK0f3oeOz76uzbAL4vn-3gTBhZJpyHI-GUkkCdjVQjWii1qW1YUAZX0GlpDdQ61HPOKMvYKDjZEASmh4--EYP35fz-bpM9HVnprPcO6vLV6U64VUlwuX5X-fcu-gNk6ogc</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Luo, Guofu</creator><creator>Sun, Tianxing</creator><creator>Wang, Haoqi</creator><creator>Li, Hao</creator><creator>Wang, Jiaqi</creator><creator>Miao, Zhuang</creator><creator>Si, Honglei</creator><creator>Che, Fuliang</creator><creator>Liu, Gen</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20230101</creationdate><title>An Energy-Saving Regulation Framework of Central Air Conditioning Based on Cloud–Edge–Device Architecture</title><author>Luo, Guofu ; Sun, Tianxing ; Wang, Haoqi ; Li, Hao ; Wang, Jiaqi ; Miao, Zhuang ; Si, Honglei ; Che, Fuliang ; Liu, Gen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-ffaa49d7eb9f1c62e5007ab40d7bd3ce3845b01539c760ed8e48177bea3816d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Air conditioning</topic><topic>Air conditioning from central stations</topic><topic>Analysis</topic><topic>Artificial intelligence</topic><topic>Cloud computing</topic><topic>Collaboration</topic><topic>Computer architecture</topic><topic>Control theory</topic><topic>Cooling</topic><topic>Energy conservation</topic><topic>Energy consumption</topic><topic>Energy development</topic><topic>Energy industry</topic><topic>Energy management systems</topic><topic>Green buildings</topic><topic>Humidity</topic><topic>HVAC</topic><topic>Indoor environments</topic><topic>Latency</topic><topic>Laws, regulations and rules</topic><topic>Network latency</topic><topic>Neural networks</topic><topic>Optimization algorithms</topic><topic>Power</topic><topic>Prediction models</topic><topic>Recurrent neural networks</topic><topic>Sustainability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Guofu</creatorcontrib><creatorcontrib>Sun, Tianxing</creatorcontrib><creatorcontrib>Wang, Haoqi</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Wang, Jiaqi</creatorcontrib><creatorcontrib>Miao, Zhuang</creatorcontrib><creatorcontrib>Si, Honglei</creatorcontrib><creatorcontrib>Che, Fuliang</creatorcontrib><creatorcontrib>Liu, Gen</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Guofu</au><au>Sun, Tianxing</au><au>Wang, Haoqi</au><au>Li, Hao</au><au>Wang, Jiaqi</au><au>Miao, Zhuang</au><au>Si, Honglei</au><au>Che, Fuliang</au><au>Liu, Gen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Energy-Saving Regulation Framework of Central Air Conditioning Based on Cloud–Edge–Device Architecture</atitle><jtitle>Sustainability</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>15</volume><issue>3</issue><spage>2554</spage><pages>2554-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>As energy plays a fundamental role in our modern life and most of a building’s energy is used for air conditioning, understanding the sustainable regulation theory of central air conditioning remains a significant scientific issue. In view of three shortcomings of existing energy-saving regulation methods of central air conditioning: (1) few studies on low-latency, high-reliability, and safer energy-saving control operation modes, (2) lack of consideration for human comfort, and (3) insufficient analysis of the comprehensive impact of the human–machine–environment, this paper proposes an energy-saving control framework of central air conditioning based on cloud–edge–device architecture. The framework establishes a prediction model of human comfort based on recurrent neural network. An intelligent energy-saving control strategy is proposed to ensure indoor personnel’s thermal comfort, considering the human–machine–environment factors. This study provides a basis for better understanding the sustainable control theory of building central air conditioning. Finally, the experiment proves that the proposed method can effectively reduce the energy consumption of central air conditioning. Compared with traditional regulation approaches, the proposed real-time control strategy can save up to 91% of energy consumption, depending on the environment, and advance control strategies can save an average of 4%.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su15032554</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2023-01, Vol.15 (3), p.2554
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_2775030531
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Air conditioning
Air conditioning from central stations
Analysis
Artificial intelligence
Cloud computing
Collaboration
Computer architecture
Control theory
Cooling
Energy conservation
Energy consumption
Energy development
Energy industry
Energy management systems
Green buildings
Humidity
HVAC
Indoor environments
Latency
Laws, regulations and rules
Network latency
Neural networks
Optimization algorithms
Power
Prediction models
Recurrent neural networks
Sustainability
title An Energy-Saving Regulation Framework of Central Air Conditioning Based on Cloud–Edge–Device Architecture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A07%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Energy-Saving%20Regulation%20Framework%20of%20Central%20Air%20Conditioning%20Based%20on%20Cloud%E2%80%93Edge%E2%80%93Device%20Architecture&rft.jtitle=Sustainability&rft.au=Luo,%20Guofu&rft.date=2023-01-01&rft.volume=15&rft.issue=3&rft.spage=2554&rft.pages=2554-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su15032554&rft_dat=%3Cgale_proqu%3EA743494531%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2775030531&rft_id=info:pmid/&rft_galeid=A743494531&rfr_iscdi=true