Technical Study of Deep Learning in Cloud Computing for Accurate Workload Prediction
Proactive resource management in Cloud Services not only maximizes cost effectiveness but also enables issues such as Service Level Agreement (SLA) violations and the provisioning of resources to be overcome. Workload prediction using Deep Learning (DL) is a popular method of inferring complicated m...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2023-02, Vol.12 (3), p.650 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 650 |
container_title | Electronics (Basel) |
container_volume | 12 |
creator | Ahamed, Zaakki Khemakhem, Maher Eassa, Fathy Alsolami, Fawaz Al-Ghamdi, Abdullah S. Al-Malaise |
description | Proactive resource management in Cloud Services not only maximizes cost effectiveness but also enables issues such as Service Level Agreement (SLA) violations and the provisioning of resources to be overcome. Workload prediction using Deep Learning (DL) is a popular method of inferring complicated multidimensional data of cloud environments to meet this requirement. The overall quality of the model depends on the quality of the data as much as the architecture. Therefore, the data sourced to train the model must be of good quality. However, existing works in this domain have either used a singular data source or have not taken into account the importance of uniformity for unbiased and accurate analysis. This results in the efficacy of DL models suffering. In this paper, we provide a technical analysis of using DL models such as Recurrent Neural Networks (RNN), Multilayer Perception (MLP), Long Short-Term Memory (LSTM), and, Convolutional Neural Networks (CNN) to exploit the time series characteristics of real-world workloads from the Parallel Workloads Archive of the Standard Workload Format (SWF) with the aim of conducting an unbiased analysis. The robustness of these models is evaluated using the Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) error metrics. The findings of these highlight that the LSTM model exhibits the best performance compared to the other models. Additionally, to the best of our knowledge, insights of DL in workload prediction of cloud computing environments is insufficient in the literature. To address these challenges, we provide a comprehensive background on resource management and load prediction using DL. Then, we break down the models, error metrics, and data sources across different bodies of work. |
doi_str_mv | 10.3390/electronics12030650 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2774856616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743139921</galeid><sourcerecordid>A743139921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-be5c94ccf7ab45125b28577cc8a3971cfd0575a53c3adb3aa490e74eae73c50e3</originalsourceid><addsrcrecordid>eNptkE9PwzAMxSMEEtPYJ-ASiXNH0jRNc5zKX2kSSAxxrFLXGRldUtL2sG9Pp3HggH2w9fR-tvQIueZsKYRmt9giDDF4Bz1PmWC5ZGdkljKlE53q9PzPfkkWfb9jU2kuCsFmZLNB-JxQ09K3YWwONFh6h9jRNZrond9S52nZhrGhZdh343CUbIh0BTBGMyD9CPGrDaahrxEbB4ML_opcWNP2uPidc_L-cL8pn5L1y-NzuVonIDgfkhol6AzAKlNnkqeyTgupFEBhhFYcbMOkkkYKEKaphTGZZqgyNKgESIZiTm5Od7sYvkfsh2oXxuinl1WqVFbIPOf55FqeXFvTYuW8DUM0MHWDewfBo3WTvlKZ4ELrlE-AOAEQQ99HtFUX3d7EQ8VZdYy8-idy8QM-5HdX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774856616</pqid></control><display><type>article</type><title>Technical Study of Deep Learning in Cloud Computing for Accurate Workload Prediction</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Ahamed, Zaakki ; Khemakhem, Maher ; Eassa, Fathy ; Alsolami, Fawaz ; Al-Ghamdi, Abdullah S. Al-Malaise</creator><creatorcontrib>Ahamed, Zaakki ; Khemakhem, Maher ; Eassa, Fathy ; Alsolami, Fawaz ; Al-Ghamdi, Abdullah S. Al-Malaise</creatorcontrib><description>Proactive resource management in Cloud Services not only maximizes cost effectiveness but also enables issues such as Service Level Agreement (SLA) violations and the provisioning of resources to be overcome. Workload prediction using Deep Learning (DL) is a popular method of inferring complicated multidimensional data of cloud environments to meet this requirement. The overall quality of the model depends on the quality of the data as much as the architecture. Therefore, the data sourced to train the model must be of good quality. However, existing works in this domain have either used a singular data source or have not taken into account the importance of uniformity for unbiased and accurate analysis. This results in the efficacy of DL models suffering. In this paper, we provide a technical analysis of using DL models such as Recurrent Neural Networks (RNN), Multilayer Perception (MLP), Long Short-Term Memory (LSTM), and, Convolutional Neural Networks (CNN) to exploit the time series characteristics of real-world workloads from the Parallel Workloads Archive of the Standard Workload Format (SWF) with the aim of conducting an unbiased analysis. The robustness of these models is evaluated using the Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) error metrics. The findings of these highlight that the LSTM model exhibits the best performance compared to the other models. Additionally, to the best of our knowledge, insights of DL in workload prediction of cloud computing environments is insufficient in the literature. To address these challenges, we provide a comprehensive background on resource management and load prediction using DL. Then, we break down the models, error metrics, and data sources across different bodies of work.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics12030650</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Analysis ; Artificial neural networks ; Cloud computing ; Cost effectiveness ; Data sources ; Datasets ; Deep learning ; Energy consumption ; Machine learning ; Multidimensional data ; Multilayers ; Neural networks ; Provisioning ; Recurrent neural networks ; Resource allocation ; Resource management ; Root-mean-square errors ; Workload ; Workloads</subject><ispartof>Electronics (Basel), 2023-02, Vol.12 (3), p.650</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-be5c94ccf7ab45125b28577cc8a3971cfd0575a53c3adb3aa490e74eae73c50e3</cites><orcidid>0000-0002-0396-1347 ; 0000-0002-4201-0026 ; 0000-0003-3987-9051 ; 0000-0001-9259-4536 ; 0000-0002-1287-1634</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Ahamed, Zaakki</creatorcontrib><creatorcontrib>Khemakhem, Maher</creatorcontrib><creatorcontrib>Eassa, Fathy</creatorcontrib><creatorcontrib>Alsolami, Fawaz</creatorcontrib><creatorcontrib>Al-Ghamdi, Abdullah S. Al-Malaise</creatorcontrib><title>Technical Study of Deep Learning in Cloud Computing for Accurate Workload Prediction</title><title>Electronics (Basel)</title><description>Proactive resource management in Cloud Services not only maximizes cost effectiveness but also enables issues such as Service Level Agreement (SLA) violations and the provisioning of resources to be overcome. Workload prediction using Deep Learning (DL) is a popular method of inferring complicated multidimensional data of cloud environments to meet this requirement. The overall quality of the model depends on the quality of the data as much as the architecture. Therefore, the data sourced to train the model must be of good quality. However, existing works in this domain have either used a singular data source or have not taken into account the importance of uniformity for unbiased and accurate analysis. This results in the efficacy of DL models suffering. In this paper, we provide a technical analysis of using DL models such as Recurrent Neural Networks (RNN), Multilayer Perception (MLP), Long Short-Term Memory (LSTM), and, Convolutional Neural Networks (CNN) to exploit the time series characteristics of real-world workloads from the Parallel Workloads Archive of the Standard Workload Format (SWF) with the aim of conducting an unbiased analysis. The robustness of these models is evaluated using the Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) error metrics. The findings of these highlight that the LSTM model exhibits the best performance compared to the other models. Additionally, to the best of our knowledge, insights of DL in workload prediction of cloud computing environments is insufficient in the literature. To address these challenges, we provide a comprehensive background on resource management and load prediction using DL. Then, we break down the models, error metrics, and data sources across different bodies of work.</description><subject>Analysis</subject><subject>Artificial neural networks</subject><subject>Cloud computing</subject><subject>Cost effectiveness</subject><subject>Data sources</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Energy consumption</subject><subject>Machine learning</subject><subject>Multidimensional data</subject><subject>Multilayers</subject><subject>Neural networks</subject><subject>Provisioning</subject><subject>Recurrent neural networks</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>Root-mean-square errors</subject><subject>Workload</subject><subject>Workloads</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkE9PwzAMxSMEEtPYJ-ASiXNH0jRNc5zKX2kSSAxxrFLXGRldUtL2sG9Pp3HggH2w9fR-tvQIueZsKYRmt9giDDF4Bz1PmWC5ZGdkljKlE53q9PzPfkkWfb9jU2kuCsFmZLNB-JxQ09K3YWwONFh6h9jRNZrond9S52nZhrGhZdh343CUbIh0BTBGMyD9CPGrDaahrxEbB4ML_opcWNP2uPidc_L-cL8pn5L1y-NzuVonIDgfkhol6AzAKlNnkqeyTgupFEBhhFYcbMOkkkYKEKaphTGZZqgyNKgESIZiTm5Od7sYvkfsh2oXxuinl1WqVFbIPOf55FqeXFvTYuW8DUM0MHWDewfBo3WTvlKZ4ELrlE-AOAEQQ99HtFUX3d7EQ8VZdYy8-idy8QM-5HdX</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Ahamed, Zaakki</creator><creator>Khemakhem, Maher</creator><creator>Eassa, Fathy</creator><creator>Alsolami, Fawaz</creator><creator>Al-Ghamdi, Abdullah S. Al-Malaise</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-0396-1347</orcidid><orcidid>https://orcid.org/0000-0002-4201-0026</orcidid><orcidid>https://orcid.org/0000-0003-3987-9051</orcidid><orcidid>https://orcid.org/0000-0001-9259-4536</orcidid><orcidid>https://orcid.org/0000-0002-1287-1634</orcidid></search><sort><creationdate>20230201</creationdate><title>Technical Study of Deep Learning in Cloud Computing for Accurate Workload Prediction</title><author>Ahamed, Zaakki ; Khemakhem, Maher ; Eassa, Fathy ; Alsolami, Fawaz ; Al-Ghamdi, Abdullah S. Al-Malaise</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-be5c94ccf7ab45125b28577cc8a3971cfd0575a53c3adb3aa490e74eae73c50e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Artificial neural networks</topic><topic>Cloud computing</topic><topic>Cost effectiveness</topic><topic>Data sources</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Energy consumption</topic><topic>Machine learning</topic><topic>Multidimensional data</topic><topic>Multilayers</topic><topic>Neural networks</topic><topic>Provisioning</topic><topic>Recurrent neural networks</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>Root-mean-square errors</topic><topic>Workload</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahamed, Zaakki</creatorcontrib><creatorcontrib>Khemakhem, Maher</creatorcontrib><creatorcontrib>Eassa, Fathy</creatorcontrib><creatorcontrib>Alsolami, Fawaz</creatorcontrib><creatorcontrib>Al-Ghamdi, Abdullah S. Al-Malaise</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahamed, Zaakki</au><au>Khemakhem, Maher</au><au>Eassa, Fathy</au><au>Alsolami, Fawaz</au><au>Al-Ghamdi, Abdullah S. Al-Malaise</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Technical Study of Deep Learning in Cloud Computing for Accurate Workload Prediction</atitle><jtitle>Electronics (Basel)</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>12</volume><issue>3</issue><spage>650</spage><pages>650-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Proactive resource management in Cloud Services not only maximizes cost effectiveness but also enables issues such as Service Level Agreement (SLA) violations and the provisioning of resources to be overcome. Workload prediction using Deep Learning (DL) is a popular method of inferring complicated multidimensional data of cloud environments to meet this requirement. The overall quality of the model depends on the quality of the data as much as the architecture. Therefore, the data sourced to train the model must be of good quality. However, existing works in this domain have either used a singular data source or have not taken into account the importance of uniformity for unbiased and accurate analysis. This results in the efficacy of DL models suffering. In this paper, we provide a technical analysis of using DL models such as Recurrent Neural Networks (RNN), Multilayer Perception (MLP), Long Short-Term Memory (LSTM), and, Convolutional Neural Networks (CNN) to exploit the time series characteristics of real-world workloads from the Parallel Workloads Archive of the Standard Workload Format (SWF) with the aim of conducting an unbiased analysis. The robustness of these models is evaluated using the Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) error metrics. The findings of these highlight that the LSTM model exhibits the best performance compared to the other models. Additionally, to the best of our knowledge, insights of DL in workload prediction of cloud computing environments is insufficient in the literature. To address these challenges, we provide a comprehensive background on resource management and load prediction using DL. Then, we break down the models, error metrics, and data sources across different bodies of work.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics12030650</doi><orcidid>https://orcid.org/0000-0002-0396-1347</orcidid><orcidid>https://orcid.org/0000-0002-4201-0026</orcidid><orcidid>https://orcid.org/0000-0003-3987-9051</orcidid><orcidid>https://orcid.org/0000-0001-9259-4536</orcidid><orcidid>https://orcid.org/0000-0002-1287-1634</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2023-02, Vol.12 (3), p.650 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2774856616 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Analysis Artificial neural networks Cloud computing Cost effectiveness Data sources Datasets Deep learning Energy consumption Machine learning Multidimensional data Multilayers Neural networks Provisioning Recurrent neural networks Resource allocation Resource management Root-mean-square errors Workload Workloads |
title | Technical Study of Deep Learning in Cloud Computing for Accurate Workload Prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A55%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Technical%20Study%20of%20Deep%20Learning%20in%20Cloud%20Computing%20for%20Accurate%20Workload%20Prediction&rft.jtitle=Electronics%20(Basel)&rft.au=Ahamed,%20Zaakki&rft.date=2023-02-01&rft.volume=12&rft.issue=3&rft.spage=650&rft.pages=650-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics12030650&rft_dat=%3Cgale_proqu%3EA743139921%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774856616&rft_id=info:pmid/&rft_galeid=A743139921&rfr_iscdi=true |