Accounting for viscoelastic effects in a multiscale fatigue model for the degradation of the dynamic stiffness of short-fiber reinforced thermoplastics

Under fatigue loading, the stiffness decrease in short-fiber reinforced polymers reflects the gradual degradation of the material. Thus, both measuring and modeling this stiffness is critical to investigate and understand the entire fatigue process. Besides evolving damage, viscoelastic effects with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mechanics 2023-03, Vol.71 (3), p.493-515
Hauptverfasser: Magino, Nicola, Köbler, Jonathan, Andrä, Heiko, Welschinger, Fabian, Müller, Ralf, Schneider, Matti
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 515
container_issue 3
container_start_page 493
container_title Computational mechanics
container_volume 71
creator Magino, Nicola
Köbler, Jonathan
Andrä, Heiko
Welschinger, Fabian
Müller, Ralf
Schneider, Matti
description Under fatigue loading, the stiffness decrease in short-fiber reinforced polymers reflects the gradual degradation of the material. Thus, both measuring and modeling this stiffness is critical to investigate and understand the entire fatigue process. Besides evolving damage, viscoelastic effects within the polymer influence the measured dynamic stiffness. In this paper, we study the influence of a linear viscoelastic material model for the matrix on the obtained dynamic stiffness and extend an elastic multiscale fatigue-damage model to viscoelasticity. Our contribution is two-fold. First, we revisit the complex-valued elastic models known in the literature to predict the asymptotic periodic orbit of a viscoelastic material. For small phase shifts in an isotropic linear viscoelastic material, we show through numerical experiments that a real-valued computation of an “elastic”  material is sufficient to approximate the dynamic stiffness of a microstructure with a generalized Maxwell material and equal Poisson’s ratios in every element as matrix, reinforced by elastic inclusions. This makes standard solvers applicable to fiber-reinforced thermoplastics. Secondly, we propose a viscoelastic fatigue-damage model for the thermoplastic matrix based on decoupling of the time scales where viscoelastic and fatigue-damage effects manifest. We demonstrate the capability of the multiscale model to predict the dynamic stiffness evolution under fatigue loading of short-fiber reinforced polybutylene terephthalate (PBT) by a validation with experimental results.
doi_str_mv 10.1007/s00466-022-02246-y
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2774705428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A736515048</galeid><sourcerecordid>A736515048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-aeb0f94f9ac4389b11d8d15f66090e0560ce523a6858177d36c4af81f5aec0473</originalsourceid><addsrcrecordid>eNp9kctq3TAQhkVpoKdpX6ArQVddOB3ZutjLQ-glECgkzVroyCPHwZZOJbn0PElet3JcKNkEIcTM_N_MiJ-QDwwuGID6nAC4lBXU9Xq5rE6vyI7xpoRdzV-THTDVVkoq8Ya8TekBgIm2ETvyuLc2LD6PfqAuRPp7TDbgZFIeLUXn0OZER08NnZcpl6KZkDqTx2FBOocepycs3yPtcYimL6XgaXBb6uTNXBqVbs55TGktpPsQc-XGA0YacfSFt9iv-jiH4zY6vSNnzkwJ3_97z8nd1y8_L79X1z--XV3uryvLG5krgwdwHXedKXHbHRjr254JJyV0gCAkWBR1Y2QrWqZU30jLjWuZEwYtcNWck49b32MMvxZMWT-EJfoyUtdKcQWC121RXWyqoXxfryvnaGw5PZbvBY9uLPm9aqRgAvgKfHoGFE3GP3kwS0r66vbmubbetDaGlCI6fYzjbOJJM9Cru3pzVxdn9ZO7-lSgZoNSEfsB4_-9X6D-AlNwqn0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774705428</pqid></control><display><type>article</type><title>Accounting for viscoelastic effects in a multiscale fatigue model for the degradation of the dynamic stiffness of short-fiber reinforced thermoplastics</title><source>SpringerLink Journals - AutoHoldings</source><creator>Magino, Nicola ; Köbler, Jonathan ; Andrä, Heiko ; Welschinger, Fabian ; Müller, Ralf ; Schneider, Matti</creator><creatorcontrib>Magino, Nicola ; Köbler, Jonathan ; Andrä, Heiko ; Welschinger, Fabian ; Müller, Ralf ; Schneider, Matti</creatorcontrib><description>Under fatigue loading, the stiffness decrease in short-fiber reinforced polymers reflects the gradual degradation of the material. Thus, both measuring and modeling this stiffness is critical to investigate and understand the entire fatigue process. Besides evolving damage, viscoelastic effects within the polymer influence the measured dynamic stiffness. In this paper, we study the influence of a linear viscoelastic material model for the matrix on the obtained dynamic stiffness and extend an elastic multiscale fatigue-damage model to viscoelasticity. Our contribution is two-fold. First, we revisit the complex-valued elastic models known in the literature to predict the asymptotic periodic orbit of a viscoelastic material. For small phase shifts in an isotropic linear viscoelastic material, we show through numerical experiments that a real-valued computation of an “elastic”  material is sufficient to approximate the dynamic stiffness of a microstructure with a generalized Maxwell material and equal Poisson’s ratios in every element as matrix, reinforced by elastic inclusions. This makes standard solvers applicable to fiber-reinforced thermoplastics. Secondly, we propose a viscoelastic fatigue-damage model for the thermoplastic matrix based on decoupling of the time scales where viscoelastic and fatigue-damage effects manifest. We demonstrate the capability of the multiscale model to predict the dynamic stiffness evolution under fatigue loading of short-fiber reinforced polybutylene terephthalate (PBT) by a validation with experimental results.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-022-02246-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Classical and Continuum Physics ; Computational Science and Engineering ; Crystalline polymers ; Damage assessment ; Decoupling ; Degradation ; Engineering ; Fatigue ; Fatigue failure ; Fatigue testing machines ; Fiber reinforced polymers ; Inclusions ; Isotropic material ; Materials ; Mathematical analysis ; Orbits ; Original Paper ; Polybutylene terephthalates ; Stiffness ; Theoretical and Applied Mechanics ; Thermoplastic resins ; Thermoplastics ; Viscoelasticity</subject><ispartof>Computational mechanics, 2023-03, Vol.71 (3), p.493-515</ispartof><rights>The Author(s) 2022</rights><rights>COPYRIGHT 2023 Springer</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-aeb0f94f9ac4389b11d8d15f66090e0560ce523a6858177d36c4af81f5aec0473</citedby><cites>FETCH-LOGICAL-c436t-aeb0f94f9ac4389b11d8d15f66090e0560ce523a6858177d36c4af81f5aec0473</cites><orcidid>0000-0001-7017-3618</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00466-022-02246-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00466-022-02246-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Magino, Nicola</creatorcontrib><creatorcontrib>Köbler, Jonathan</creatorcontrib><creatorcontrib>Andrä, Heiko</creatorcontrib><creatorcontrib>Welschinger, Fabian</creatorcontrib><creatorcontrib>Müller, Ralf</creatorcontrib><creatorcontrib>Schneider, Matti</creatorcontrib><title>Accounting for viscoelastic effects in a multiscale fatigue model for the degradation of the dynamic stiffness of short-fiber reinforced thermoplastics</title><title>Computational mechanics</title><addtitle>Comput Mech</addtitle><description>Under fatigue loading, the stiffness decrease in short-fiber reinforced polymers reflects the gradual degradation of the material. Thus, both measuring and modeling this stiffness is critical to investigate and understand the entire fatigue process. Besides evolving damage, viscoelastic effects within the polymer influence the measured dynamic stiffness. In this paper, we study the influence of a linear viscoelastic material model for the matrix on the obtained dynamic stiffness and extend an elastic multiscale fatigue-damage model to viscoelasticity. Our contribution is two-fold. First, we revisit the complex-valued elastic models known in the literature to predict the asymptotic periodic orbit of a viscoelastic material. For small phase shifts in an isotropic linear viscoelastic material, we show through numerical experiments that a real-valued computation of an “elastic”  material is sufficient to approximate the dynamic stiffness of a microstructure with a generalized Maxwell material and equal Poisson’s ratios in every element as matrix, reinforced by elastic inclusions. This makes standard solvers applicable to fiber-reinforced thermoplastics. Secondly, we propose a viscoelastic fatigue-damage model for the thermoplastic matrix based on decoupling of the time scales where viscoelastic and fatigue-damage effects manifest. We demonstrate the capability of the multiscale model to predict the dynamic stiffness evolution under fatigue loading of short-fiber reinforced polybutylene terephthalate (PBT) by a validation with experimental results.</description><subject>Analysis</subject><subject>Classical and Continuum Physics</subject><subject>Computational Science and Engineering</subject><subject>Crystalline polymers</subject><subject>Damage assessment</subject><subject>Decoupling</subject><subject>Degradation</subject><subject>Engineering</subject><subject>Fatigue</subject><subject>Fatigue failure</subject><subject>Fatigue testing machines</subject><subject>Fiber reinforced polymers</subject><subject>Inclusions</subject><subject>Isotropic material</subject><subject>Materials</subject><subject>Mathematical analysis</subject><subject>Orbits</subject><subject>Original Paper</subject><subject>Polybutylene terephthalates</subject><subject>Stiffness</subject><subject>Theoretical and Applied Mechanics</subject><subject>Thermoplastic resins</subject><subject>Thermoplastics</subject><subject>Viscoelasticity</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kctq3TAQhkVpoKdpX6ArQVddOB3ZutjLQ-glECgkzVroyCPHwZZOJbn0PElet3JcKNkEIcTM_N_MiJ-QDwwuGID6nAC4lBXU9Xq5rE6vyI7xpoRdzV-THTDVVkoq8Ya8TekBgIm2ETvyuLc2LD6PfqAuRPp7TDbgZFIeLUXn0OZER08NnZcpl6KZkDqTx2FBOocepycs3yPtcYimL6XgaXBb6uTNXBqVbs55TGktpPsQc-XGA0YacfSFt9iv-jiH4zY6vSNnzkwJ3_97z8nd1y8_L79X1z--XV3uryvLG5krgwdwHXedKXHbHRjr254JJyV0gCAkWBR1Y2QrWqZU30jLjWuZEwYtcNWck49b32MMvxZMWT-EJfoyUtdKcQWC121RXWyqoXxfryvnaGw5PZbvBY9uLPm9aqRgAvgKfHoGFE3GP3kwS0r66vbmubbetDaGlCI6fYzjbOJJM9Cru3pzVxdn9ZO7-lSgZoNSEfsB4_-9X6D-AlNwqn0</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Magino, Nicola</creator><creator>Köbler, Jonathan</creator><creator>Andrä, Heiko</creator><creator>Welschinger, Fabian</creator><creator>Müller, Ralf</creator><creator>Schneider, Matti</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-7017-3618</orcidid></search><sort><creationdate>20230301</creationdate><title>Accounting for viscoelastic effects in a multiscale fatigue model for the degradation of the dynamic stiffness of short-fiber reinforced thermoplastics</title><author>Magino, Nicola ; Köbler, Jonathan ; Andrä, Heiko ; Welschinger, Fabian ; Müller, Ralf ; Schneider, Matti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-aeb0f94f9ac4389b11d8d15f66090e0560ce523a6858177d36c4af81f5aec0473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Classical and Continuum Physics</topic><topic>Computational Science and Engineering</topic><topic>Crystalline polymers</topic><topic>Damage assessment</topic><topic>Decoupling</topic><topic>Degradation</topic><topic>Engineering</topic><topic>Fatigue</topic><topic>Fatigue failure</topic><topic>Fatigue testing machines</topic><topic>Fiber reinforced polymers</topic><topic>Inclusions</topic><topic>Isotropic material</topic><topic>Materials</topic><topic>Mathematical analysis</topic><topic>Orbits</topic><topic>Original Paper</topic><topic>Polybutylene terephthalates</topic><topic>Stiffness</topic><topic>Theoretical and Applied Mechanics</topic><topic>Thermoplastic resins</topic><topic>Thermoplastics</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Magino, Nicola</creatorcontrib><creatorcontrib>Köbler, Jonathan</creatorcontrib><creatorcontrib>Andrä, Heiko</creatorcontrib><creatorcontrib>Welschinger, Fabian</creatorcontrib><creatorcontrib>Müller, Ralf</creatorcontrib><creatorcontrib>Schneider, Matti</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Magino, Nicola</au><au>Köbler, Jonathan</au><au>Andrä, Heiko</au><au>Welschinger, Fabian</au><au>Müller, Ralf</au><au>Schneider, Matti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accounting for viscoelastic effects in a multiscale fatigue model for the degradation of the dynamic stiffness of short-fiber reinforced thermoplastics</atitle><jtitle>Computational mechanics</jtitle><stitle>Comput Mech</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>71</volume><issue>3</issue><spage>493</spage><epage>515</epage><pages>493-515</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><abstract>Under fatigue loading, the stiffness decrease in short-fiber reinforced polymers reflects the gradual degradation of the material. Thus, both measuring and modeling this stiffness is critical to investigate and understand the entire fatigue process. Besides evolving damage, viscoelastic effects within the polymer influence the measured dynamic stiffness. In this paper, we study the influence of a linear viscoelastic material model for the matrix on the obtained dynamic stiffness and extend an elastic multiscale fatigue-damage model to viscoelasticity. Our contribution is two-fold. First, we revisit the complex-valued elastic models known in the literature to predict the asymptotic periodic orbit of a viscoelastic material. For small phase shifts in an isotropic linear viscoelastic material, we show through numerical experiments that a real-valued computation of an “elastic”  material is sufficient to approximate the dynamic stiffness of a microstructure with a generalized Maxwell material and equal Poisson’s ratios in every element as matrix, reinforced by elastic inclusions. This makes standard solvers applicable to fiber-reinforced thermoplastics. Secondly, we propose a viscoelastic fatigue-damage model for the thermoplastic matrix based on decoupling of the time scales where viscoelastic and fatigue-damage effects manifest. We demonstrate the capability of the multiscale model to predict the dynamic stiffness evolution under fatigue loading of short-fiber reinforced polybutylene terephthalate (PBT) by a validation with experimental results.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00466-022-02246-y</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-7017-3618</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0178-7675
ispartof Computational mechanics, 2023-03, Vol.71 (3), p.493-515
issn 0178-7675
1432-0924
language eng
recordid cdi_proquest_journals_2774705428
source SpringerLink Journals - AutoHoldings
subjects Analysis
Classical and Continuum Physics
Computational Science and Engineering
Crystalline polymers
Damage assessment
Decoupling
Degradation
Engineering
Fatigue
Fatigue failure
Fatigue testing machines
Fiber reinforced polymers
Inclusions
Isotropic material
Materials
Mathematical analysis
Orbits
Original Paper
Polybutylene terephthalates
Stiffness
Theoretical and Applied Mechanics
Thermoplastic resins
Thermoplastics
Viscoelasticity
title Accounting for viscoelastic effects in a multiscale fatigue model for the degradation of the dynamic stiffness of short-fiber reinforced thermoplastics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T09%3A04%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accounting%20for%20viscoelastic%20effects%20in%20a%20multiscale%20fatigue%20model%20for%20the%20degradation%20of%20the%20dynamic%20stiffness%20of%20short-fiber%20reinforced%20thermoplastics&rft.jtitle=Computational%20mechanics&rft.au=Magino,%20Nicola&rft.date=2023-03-01&rft.volume=71&rft.issue=3&rft.spage=493&rft.epage=515&rft.pages=493-515&rft.issn=0178-7675&rft.eissn=1432-0924&rft_id=info:doi/10.1007/s00466-022-02246-y&rft_dat=%3Cgale_proqu%3EA736515048%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774705428&rft_id=info:pmid/&rft_galeid=A736515048&rfr_iscdi=true