Accounting for viscoelastic effects in a multiscale fatigue model for the degradation of the dynamic stiffness of short-fiber reinforced thermoplastics
Under fatigue loading, the stiffness decrease in short-fiber reinforced polymers reflects the gradual degradation of the material. Thus, both measuring and modeling this stiffness is critical to investigate and understand the entire fatigue process. Besides evolving damage, viscoelastic effects with...
Gespeichert in:
Veröffentlicht in: | Computational mechanics 2023-03, Vol.71 (3), p.493-515 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 515 |
---|---|
container_issue | 3 |
container_start_page | 493 |
container_title | Computational mechanics |
container_volume | 71 |
creator | Magino, Nicola Köbler, Jonathan Andrä, Heiko Welschinger, Fabian Müller, Ralf Schneider, Matti |
description | Under fatigue loading, the stiffness decrease in short-fiber reinforced polymers reflects the gradual degradation of the material. Thus, both measuring and modeling this stiffness is critical to investigate and understand the entire fatigue process. Besides evolving damage, viscoelastic effects within the polymer influence the measured dynamic stiffness. In this paper, we study the influence of a linear viscoelastic material model for the matrix on the obtained dynamic stiffness and extend an elastic multiscale fatigue-damage model to viscoelasticity. Our contribution is two-fold. First, we revisit the complex-valued elastic models known in the literature to predict the asymptotic periodic orbit of a viscoelastic material. For small phase shifts in an isotropic linear viscoelastic material, we show through numerical experiments that a
real-valued
computation of an “elastic” material is sufficient to approximate the dynamic stiffness of a microstructure with a generalized Maxwell material and equal Poisson’s ratios in every element as matrix, reinforced by elastic inclusions. This makes standard solvers applicable to fiber-reinforced thermoplastics. Secondly, we propose a viscoelastic fatigue-damage model for the thermoplastic matrix based on decoupling of the time scales where viscoelastic and fatigue-damage effects manifest. We demonstrate the capability of the multiscale model to predict the dynamic stiffness evolution under fatigue loading of short-fiber reinforced polybutylene terephthalate (PBT) by a validation with experimental results. |
doi_str_mv | 10.1007/s00466-022-02246-y |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2774705428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A736515048</galeid><sourcerecordid>A736515048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-aeb0f94f9ac4389b11d8d15f66090e0560ce523a6858177d36c4af81f5aec0473</originalsourceid><addsrcrecordid>eNp9kctq3TAQhkVpoKdpX6ArQVddOB3ZutjLQ-glECgkzVroyCPHwZZOJbn0PElet3JcKNkEIcTM_N_MiJ-QDwwuGID6nAC4lBXU9Xq5rE6vyI7xpoRdzV-THTDVVkoq8Ya8TekBgIm2ETvyuLc2LD6PfqAuRPp7TDbgZFIeLUXn0OZER08NnZcpl6KZkDqTx2FBOocepycs3yPtcYimL6XgaXBb6uTNXBqVbs55TGktpPsQc-XGA0YacfSFt9iv-jiH4zY6vSNnzkwJ3_97z8nd1y8_L79X1z--XV3uryvLG5krgwdwHXedKXHbHRjr254JJyV0gCAkWBR1Y2QrWqZU30jLjWuZEwYtcNWck49b32MMvxZMWT-EJfoyUtdKcQWC121RXWyqoXxfryvnaGw5PZbvBY9uLPm9aqRgAvgKfHoGFE3GP3kwS0r66vbmubbetDaGlCI6fYzjbOJJM9Cru3pzVxdn9ZO7-lSgZoNSEfsB4_-9X6D-AlNwqn0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774705428</pqid></control><display><type>article</type><title>Accounting for viscoelastic effects in a multiscale fatigue model for the degradation of the dynamic stiffness of short-fiber reinforced thermoplastics</title><source>SpringerLink Journals - AutoHoldings</source><creator>Magino, Nicola ; Köbler, Jonathan ; Andrä, Heiko ; Welschinger, Fabian ; Müller, Ralf ; Schneider, Matti</creator><creatorcontrib>Magino, Nicola ; Köbler, Jonathan ; Andrä, Heiko ; Welschinger, Fabian ; Müller, Ralf ; Schneider, Matti</creatorcontrib><description>Under fatigue loading, the stiffness decrease in short-fiber reinforced polymers reflects the gradual degradation of the material. Thus, both measuring and modeling this stiffness is critical to investigate and understand the entire fatigue process. Besides evolving damage, viscoelastic effects within the polymer influence the measured dynamic stiffness. In this paper, we study the influence of a linear viscoelastic material model for the matrix on the obtained dynamic stiffness and extend an elastic multiscale fatigue-damage model to viscoelasticity. Our contribution is two-fold. First, we revisit the complex-valued elastic models known in the literature to predict the asymptotic periodic orbit of a viscoelastic material. For small phase shifts in an isotropic linear viscoelastic material, we show through numerical experiments that a
real-valued
computation of an “elastic” material is sufficient to approximate the dynamic stiffness of a microstructure with a generalized Maxwell material and equal Poisson’s ratios in every element as matrix, reinforced by elastic inclusions. This makes standard solvers applicable to fiber-reinforced thermoplastics. Secondly, we propose a viscoelastic fatigue-damage model for the thermoplastic matrix based on decoupling of the time scales where viscoelastic and fatigue-damage effects manifest. We demonstrate the capability of the multiscale model to predict the dynamic stiffness evolution under fatigue loading of short-fiber reinforced polybutylene terephthalate (PBT) by a validation with experimental results.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-022-02246-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Classical and Continuum Physics ; Computational Science and Engineering ; Crystalline polymers ; Damage assessment ; Decoupling ; Degradation ; Engineering ; Fatigue ; Fatigue failure ; Fatigue testing machines ; Fiber reinforced polymers ; Inclusions ; Isotropic material ; Materials ; Mathematical analysis ; Orbits ; Original Paper ; Polybutylene terephthalates ; Stiffness ; Theoretical and Applied Mechanics ; Thermoplastic resins ; Thermoplastics ; Viscoelasticity</subject><ispartof>Computational mechanics, 2023-03, Vol.71 (3), p.493-515</ispartof><rights>The Author(s) 2022</rights><rights>COPYRIGHT 2023 Springer</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-aeb0f94f9ac4389b11d8d15f66090e0560ce523a6858177d36c4af81f5aec0473</citedby><cites>FETCH-LOGICAL-c436t-aeb0f94f9ac4389b11d8d15f66090e0560ce523a6858177d36c4af81f5aec0473</cites><orcidid>0000-0001-7017-3618</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00466-022-02246-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00466-022-02246-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Magino, Nicola</creatorcontrib><creatorcontrib>Köbler, Jonathan</creatorcontrib><creatorcontrib>Andrä, Heiko</creatorcontrib><creatorcontrib>Welschinger, Fabian</creatorcontrib><creatorcontrib>Müller, Ralf</creatorcontrib><creatorcontrib>Schneider, Matti</creatorcontrib><title>Accounting for viscoelastic effects in a multiscale fatigue model for the degradation of the dynamic stiffness of short-fiber reinforced thermoplastics</title><title>Computational mechanics</title><addtitle>Comput Mech</addtitle><description>Under fatigue loading, the stiffness decrease in short-fiber reinforced polymers reflects the gradual degradation of the material. Thus, both measuring and modeling this stiffness is critical to investigate and understand the entire fatigue process. Besides evolving damage, viscoelastic effects within the polymer influence the measured dynamic stiffness. In this paper, we study the influence of a linear viscoelastic material model for the matrix on the obtained dynamic stiffness and extend an elastic multiscale fatigue-damage model to viscoelasticity. Our contribution is two-fold. First, we revisit the complex-valued elastic models known in the literature to predict the asymptotic periodic orbit of a viscoelastic material. For small phase shifts in an isotropic linear viscoelastic material, we show through numerical experiments that a
real-valued
computation of an “elastic” material is sufficient to approximate the dynamic stiffness of a microstructure with a generalized Maxwell material and equal Poisson’s ratios in every element as matrix, reinforced by elastic inclusions. This makes standard solvers applicable to fiber-reinforced thermoplastics. Secondly, we propose a viscoelastic fatigue-damage model for the thermoplastic matrix based on decoupling of the time scales where viscoelastic and fatigue-damage effects manifest. We demonstrate the capability of the multiscale model to predict the dynamic stiffness evolution under fatigue loading of short-fiber reinforced polybutylene terephthalate (PBT) by a validation with experimental results.</description><subject>Analysis</subject><subject>Classical and Continuum Physics</subject><subject>Computational Science and Engineering</subject><subject>Crystalline polymers</subject><subject>Damage assessment</subject><subject>Decoupling</subject><subject>Degradation</subject><subject>Engineering</subject><subject>Fatigue</subject><subject>Fatigue failure</subject><subject>Fatigue testing machines</subject><subject>Fiber reinforced polymers</subject><subject>Inclusions</subject><subject>Isotropic material</subject><subject>Materials</subject><subject>Mathematical analysis</subject><subject>Orbits</subject><subject>Original Paper</subject><subject>Polybutylene terephthalates</subject><subject>Stiffness</subject><subject>Theoretical and Applied Mechanics</subject><subject>Thermoplastic resins</subject><subject>Thermoplastics</subject><subject>Viscoelasticity</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kctq3TAQhkVpoKdpX6ArQVddOB3ZutjLQ-glECgkzVroyCPHwZZOJbn0PElet3JcKNkEIcTM_N_MiJ-QDwwuGID6nAC4lBXU9Xq5rE6vyI7xpoRdzV-THTDVVkoq8Ya8TekBgIm2ETvyuLc2LD6PfqAuRPp7TDbgZFIeLUXn0OZER08NnZcpl6KZkDqTx2FBOocepycs3yPtcYimL6XgaXBb6uTNXBqVbs55TGktpPsQc-XGA0YacfSFt9iv-jiH4zY6vSNnzkwJ3_97z8nd1y8_L79X1z--XV3uryvLG5krgwdwHXedKXHbHRjr254JJyV0gCAkWBR1Y2QrWqZU30jLjWuZEwYtcNWck49b32MMvxZMWT-EJfoyUtdKcQWC121RXWyqoXxfryvnaGw5PZbvBY9uLPm9aqRgAvgKfHoGFE3GP3kwS0r66vbmubbetDaGlCI6fYzjbOJJM9Cru3pzVxdn9ZO7-lSgZoNSEfsB4_-9X6D-AlNwqn0</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Magino, Nicola</creator><creator>Köbler, Jonathan</creator><creator>Andrä, Heiko</creator><creator>Welschinger, Fabian</creator><creator>Müller, Ralf</creator><creator>Schneider, Matti</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-7017-3618</orcidid></search><sort><creationdate>20230301</creationdate><title>Accounting for viscoelastic effects in a multiscale fatigue model for the degradation of the dynamic stiffness of short-fiber reinforced thermoplastics</title><author>Magino, Nicola ; Köbler, Jonathan ; Andrä, Heiko ; Welschinger, Fabian ; Müller, Ralf ; Schneider, Matti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-aeb0f94f9ac4389b11d8d15f66090e0560ce523a6858177d36c4af81f5aec0473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Classical and Continuum Physics</topic><topic>Computational Science and Engineering</topic><topic>Crystalline polymers</topic><topic>Damage assessment</topic><topic>Decoupling</topic><topic>Degradation</topic><topic>Engineering</topic><topic>Fatigue</topic><topic>Fatigue failure</topic><topic>Fatigue testing machines</topic><topic>Fiber reinforced polymers</topic><topic>Inclusions</topic><topic>Isotropic material</topic><topic>Materials</topic><topic>Mathematical analysis</topic><topic>Orbits</topic><topic>Original Paper</topic><topic>Polybutylene terephthalates</topic><topic>Stiffness</topic><topic>Theoretical and Applied Mechanics</topic><topic>Thermoplastic resins</topic><topic>Thermoplastics</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Magino, Nicola</creatorcontrib><creatorcontrib>Köbler, Jonathan</creatorcontrib><creatorcontrib>Andrä, Heiko</creatorcontrib><creatorcontrib>Welschinger, Fabian</creatorcontrib><creatorcontrib>Müller, Ralf</creatorcontrib><creatorcontrib>Schneider, Matti</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Magino, Nicola</au><au>Köbler, Jonathan</au><au>Andrä, Heiko</au><au>Welschinger, Fabian</au><au>Müller, Ralf</au><au>Schneider, Matti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accounting for viscoelastic effects in a multiscale fatigue model for the degradation of the dynamic stiffness of short-fiber reinforced thermoplastics</atitle><jtitle>Computational mechanics</jtitle><stitle>Comput Mech</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>71</volume><issue>3</issue><spage>493</spage><epage>515</epage><pages>493-515</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><abstract>Under fatigue loading, the stiffness decrease in short-fiber reinforced polymers reflects the gradual degradation of the material. Thus, both measuring and modeling this stiffness is critical to investigate and understand the entire fatigue process. Besides evolving damage, viscoelastic effects within the polymer influence the measured dynamic stiffness. In this paper, we study the influence of a linear viscoelastic material model for the matrix on the obtained dynamic stiffness and extend an elastic multiscale fatigue-damage model to viscoelasticity. Our contribution is two-fold. First, we revisit the complex-valued elastic models known in the literature to predict the asymptotic periodic orbit of a viscoelastic material. For small phase shifts in an isotropic linear viscoelastic material, we show through numerical experiments that a
real-valued
computation of an “elastic” material is sufficient to approximate the dynamic stiffness of a microstructure with a generalized Maxwell material and equal Poisson’s ratios in every element as matrix, reinforced by elastic inclusions. This makes standard solvers applicable to fiber-reinforced thermoplastics. Secondly, we propose a viscoelastic fatigue-damage model for the thermoplastic matrix based on decoupling of the time scales where viscoelastic and fatigue-damage effects manifest. We demonstrate the capability of the multiscale model to predict the dynamic stiffness evolution under fatigue loading of short-fiber reinforced polybutylene terephthalate (PBT) by a validation with experimental results.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00466-022-02246-y</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-7017-3618</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-7675 |
ispartof | Computational mechanics, 2023-03, Vol.71 (3), p.493-515 |
issn | 0178-7675 1432-0924 |
language | eng |
recordid | cdi_proquest_journals_2774705428 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Classical and Continuum Physics Computational Science and Engineering Crystalline polymers Damage assessment Decoupling Degradation Engineering Fatigue Fatigue failure Fatigue testing machines Fiber reinforced polymers Inclusions Isotropic material Materials Mathematical analysis Orbits Original Paper Polybutylene terephthalates Stiffness Theoretical and Applied Mechanics Thermoplastic resins Thermoplastics Viscoelasticity |
title | Accounting for viscoelastic effects in a multiscale fatigue model for the degradation of the dynamic stiffness of short-fiber reinforced thermoplastics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T09%3A04%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accounting%20for%20viscoelastic%20effects%20in%20a%20multiscale%20fatigue%20model%20for%20the%20degradation%20of%20the%20dynamic%20stiffness%20of%20short-fiber%20reinforced%20thermoplastics&rft.jtitle=Computational%20mechanics&rft.au=Magino,%20Nicola&rft.date=2023-03-01&rft.volume=71&rft.issue=3&rft.spage=493&rft.epage=515&rft.pages=493-515&rft.issn=0178-7675&rft.eissn=1432-0924&rft_id=info:doi/10.1007/s00466-022-02246-y&rft_dat=%3Cgale_proqu%3EA736515048%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774705428&rft_id=info:pmid/&rft_galeid=A736515048&rfr_iscdi=true |