Orthogonal Polynomials on Planar Cubic Curves

Orthogonal polynomials in two variables on cubic curves are considered. For an integral with respect to an appropriate weight function defined on a cubic curve, an explicit basis of orthogonal polynomials is constructed in terms of two families of orthogonal polynomials in one variable. We show that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foundations of computational mathematics 2023-02, Vol.23 (1), p.1-31
Hauptverfasser: Fasondini, Marco, Olver, Sheehan, Xu, Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 31
container_issue 1
container_start_page 1
container_title Foundations of computational mathematics
container_volume 23
creator Fasondini, Marco
Olver, Sheehan
Xu, Yuan
description Orthogonal polynomials in two variables on cubic curves are considered. For an integral with respect to an appropriate weight function defined on a cubic curve, an explicit basis of orthogonal polynomials is constructed in terms of two families of orthogonal polynomials in one variable. We show that these orthogonal polynomials can be used to approximate functions with cubic and square root singularities, and demonstrate their usage for solving differential equations with singular solutions.
doi_str_mv 10.1007/s10208-021-09540-w
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2774560389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A736363200</galeid><sourcerecordid>A736363200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-c85319f3e6b5365ea3240c40f611ca853b1a206d86050c8c7fce9c600666a1723</originalsourceid><addsrcrecordid>eNp9kV1LwzAUhosoOKd_wKuCV15kniRN2l6O4cdg4PDjOmRZWjvaZCatc__eaMUxGHIgCTnPcwh5o-gSwwgDpDceA4EMAcEIcpYA2hxFA8wxQ5Rm9PjvnLLT6Mz7FQBmOU4GEXp07ZstrZF1PLf11timkrWPrYnntTTSxZNuUamwug_tz6OTInT1xe8-jF7vbl8mD2j2eD-djGdIMSAtUhmjOC-o5gtGOdOSkgRUAgXHWMnQXGBJgC8zDgxUptJC6VxxAM65xCmhw-iqn7t29r3TvhUr27nwRi9ImiaMA83yHVXKWovKFLZ1UjWVV2KcUh6KAAQKHaBKbbSTtTW6qML1Hj86wIda6qZSB4XrPSEwrf5sS9l5L6bPT_ss6VnlrPdOF2Ltqka6rcAgvpMUfZIiJCl-khSbINFe8gE2pXa73_jH-gLVfpvt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774560389</pqid></control><display><type>article</type><title>Orthogonal Polynomials on Planar Cubic Curves</title><source>Springer Nature - Complete Springer Journals</source><creator>Fasondini, Marco ; Olver, Sheehan ; Xu, Yuan</creator><creatorcontrib>Fasondini, Marco ; Olver, Sheehan ; Xu, Yuan</creatorcontrib><description>Orthogonal polynomials in two variables on cubic curves are considered. For an integral with respect to an appropriate weight function defined on a cubic curve, an explicit basis of orthogonal polynomials is constructed in terms of two families of orthogonal polynomials in one variable. We show that these orthogonal polynomials can be used to approximate functions with cubic and square root singularities, and demonstrate their usage for solving differential equations with singular solutions.</description><identifier>ISSN: 1615-3375</identifier><identifier>EISSN: 1615-3383</identifier><identifier>DOI: 10.1007/s10208-021-09540-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Computer Science ; Differential equations ; Economics ; Functions, Orthogonal ; Linear and Multilinear Algebras ; Math Applications in Computer Science ; Mathematical analysis ; Mathematical research ; Mathematics ; Mathematics and Statistics ; Matrix Theory ; Numerical Analysis ; Polynomials ; Singularity (mathematics) ; Weighting functions</subject><ispartof>Foundations of computational mathematics, 2023-02, Vol.23 (1), p.1-31</ispartof><rights>The Author(s) 2021</rights><rights>COPYRIGHT 2023 Springer</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-c85319f3e6b5365ea3240c40f611ca853b1a206d86050c8c7fce9c600666a1723</citedby><cites>FETCH-LOGICAL-c502t-c85319f3e6b5365ea3240c40f611ca853b1a206d86050c8c7fce9c600666a1723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10208-021-09540-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10208-021-09540-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Fasondini, Marco</creatorcontrib><creatorcontrib>Olver, Sheehan</creatorcontrib><creatorcontrib>Xu, Yuan</creatorcontrib><title>Orthogonal Polynomials on Planar Cubic Curves</title><title>Foundations of computational mathematics</title><addtitle>Found Comput Math</addtitle><description>Orthogonal polynomials in two variables on cubic curves are considered. For an integral with respect to an appropriate weight function defined on a cubic curve, an explicit basis of orthogonal polynomials is constructed in terms of two families of orthogonal polynomials in one variable. We show that these orthogonal polynomials can be used to approximate functions with cubic and square root singularities, and demonstrate their usage for solving differential equations with singular solutions.</description><subject>Applications of Mathematics</subject><subject>Computer Science</subject><subject>Differential equations</subject><subject>Economics</subject><subject>Functions, Orthogonal</subject><subject>Linear and Multilinear Algebras</subject><subject>Math Applications in Computer Science</subject><subject>Mathematical analysis</subject><subject>Mathematical research</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix Theory</subject><subject>Numerical Analysis</subject><subject>Polynomials</subject><subject>Singularity (mathematics)</subject><subject>Weighting functions</subject><issn>1615-3375</issn><issn>1615-3383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kV1LwzAUhosoOKd_wKuCV15kniRN2l6O4cdg4PDjOmRZWjvaZCatc__eaMUxGHIgCTnPcwh5o-gSwwgDpDceA4EMAcEIcpYA2hxFA8wxQ5Rm9PjvnLLT6Mz7FQBmOU4GEXp07ZstrZF1PLf11timkrWPrYnntTTSxZNuUamwug_tz6OTInT1xe8-jF7vbl8mD2j2eD-djGdIMSAtUhmjOC-o5gtGOdOSkgRUAgXHWMnQXGBJgC8zDgxUptJC6VxxAM65xCmhw-iqn7t29r3TvhUr27nwRi9ImiaMA83yHVXKWovKFLZ1UjWVV2KcUh6KAAQKHaBKbbSTtTW6qML1Hj86wIda6qZSB4XrPSEwrf5sS9l5L6bPT_ss6VnlrPdOF2Ltqka6rcAgvpMUfZIiJCl-khSbINFe8gE2pXa73_jH-gLVfpvt</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Fasondini, Marco</creator><creator>Olver, Sheehan</creator><creator>Xu, Yuan</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230201</creationdate><title>Orthogonal Polynomials on Planar Cubic Curves</title><author>Fasondini, Marco ; Olver, Sheehan ; Xu, Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-c85319f3e6b5365ea3240c40f611ca853b1a206d86050c8c7fce9c600666a1723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Mathematics</topic><topic>Computer Science</topic><topic>Differential equations</topic><topic>Economics</topic><topic>Functions, Orthogonal</topic><topic>Linear and Multilinear Algebras</topic><topic>Math Applications in Computer Science</topic><topic>Mathematical analysis</topic><topic>Mathematical research</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix Theory</topic><topic>Numerical Analysis</topic><topic>Polynomials</topic><topic>Singularity (mathematics)</topic><topic>Weighting functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fasondini, Marco</creatorcontrib><creatorcontrib>Olver, Sheehan</creatorcontrib><creatorcontrib>Xu, Yuan</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Foundations of computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fasondini, Marco</au><au>Olver, Sheehan</au><au>Xu, Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orthogonal Polynomials on Planar Cubic Curves</atitle><jtitle>Foundations of computational mathematics</jtitle><stitle>Found Comput Math</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>23</volume><issue>1</issue><spage>1</spage><epage>31</epage><pages>1-31</pages><issn>1615-3375</issn><eissn>1615-3383</eissn><abstract>Orthogonal polynomials in two variables on cubic curves are considered. For an integral with respect to an appropriate weight function defined on a cubic curve, an explicit basis of orthogonal polynomials is constructed in terms of two families of orthogonal polynomials in one variable. We show that these orthogonal polynomials can be used to approximate functions with cubic and square root singularities, and demonstrate their usage for solving differential equations with singular solutions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10208-021-09540-w</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1615-3375
ispartof Foundations of computational mathematics, 2023-02, Vol.23 (1), p.1-31
issn 1615-3375
1615-3383
language eng
recordid cdi_proquest_journals_2774560389
source Springer Nature - Complete Springer Journals
subjects Applications of Mathematics
Computer Science
Differential equations
Economics
Functions, Orthogonal
Linear and Multilinear Algebras
Math Applications in Computer Science
Mathematical analysis
Mathematical research
Mathematics
Mathematics and Statistics
Matrix Theory
Numerical Analysis
Polynomials
Singularity (mathematics)
Weighting functions
title Orthogonal Polynomials on Planar Cubic Curves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A50%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orthogonal%20Polynomials%20on%20Planar%20Cubic%20Curves&rft.jtitle=Foundations%20of%20computational%20mathematics&rft.au=Fasondini,%20Marco&rft.date=2023-02-01&rft.volume=23&rft.issue=1&rft.spage=1&rft.epage=31&rft.pages=1-31&rft.issn=1615-3375&rft.eissn=1615-3383&rft_id=info:doi/10.1007/s10208-021-09540-w&rft_dat=%3Cgale_proqu%3EA736363200%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774560389&rft_id=info:pmid/&rft_galeid=A736363200&rfr_iscdi=true