Orthogonal Polynomials on Planar Cubic Curves
Orthogonal polynomials in two variables on cubic curves are considered. For an integral with respect to an appropriate weight function defined on a cubic curve, an explicit basis of orthogonal polynomials is constructed in terms of two families of orthogonal polynomials in one variable. We show that...
Gespeichert in:
Veröffentlicht in: | Foundations of computational mathematics 2023-02, Vol.23 (1), p.1-31 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 31 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Foundations of computational mathematics |
container_volume | 23 |
creator | Fasondini, Marco Olver, Sheehan Xu, Yuan |
description | Orthogonal polynomials in two variables on cubic curves are considered. For an integral with respect to an appropriate weight function defined on a cubic curve, an explicit basis of orthogonal polynomials is constructed in terms of two families of orthogonal polynomials in one variable. We show that these orthogonal polynomials can be used to approximate functions with cubic and square root singularities, and demonstrate their usage for solving differential equations with singular solutions. |
doi_str_mv | 10.1007/s10208-021-09540-w |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2774560389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A736363200</galeid><sourcerecordid>A736363200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-c85319f3e6b5365ea3240c40f611ca853b1a206d86050c8c7fce9c600666a1723</originalsourceid><addsrcrecordid>eNp9kV1LwzAUhosoOKd_wKuCV15kniRN2l6O4cdg4PDjOmRZWjvaZCatc__eaMUxGHIgCTnPcwh5o-gSwwgDpDceA4EMAcEIcpYA2hxFA8wxQ5Rm9PjvnLLT6Mz7FQBmOU4GEXp07ZstrZF1PLf11timkrWPrYnntTTSxZNuUamwug_tz6OTInT1xe8-jF7vbl8mD2j2eD-djGdIMSAtUhmjOC-o5gtGOdOSkgRUAgXHWMnQXGBJgC8zDgxUptJC6VxxAM65xCmhw-iqn7t29r3TvhUr27nwRi9ImiaMA83yHVXKWovKFLZ1UjWVV2KcUh6KAAQKHaBKbbSTtTW6qML1Hj86wIda6qZSB4XrPSEwrf5sS9l5L6bPT_ss6VnlrPdOF2Ltqka6rcAgvpMUfZIiJCl-khSbINFe8gE2pXa73_jH-gLVfpvt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774560389</pqid></control><display><type>article</type><title>Orthogonal Polynomials on Planar Cubic Curves</title><source>Springer Nature - Complete Springer Journals</source><creator>Fasondini, Marco ; Olver, Sheehan ; Xu, Yuan</creator><creatorcontrib>Fasondini, Marco ; Olver, Sheehan ; Xu, Yuan</creatorcontrib><description>Orthogonal polynomials in two variables on cubic curves are considered. For an integral with respect to an appropriate weight function defined on a cubic curve, an explicit basis of orthogonal polynomials is constructed in terms of two families of orthogonal polynomials in one variable. We show that these orthogonal polynomials can be used to approximate functions with cubic and square root singularities, and demonstrate their usage for solving differential equations with singular solutions.</description><identifier>ISSN: 1615-3375</identifier><identifier>EISSN: 1615-3383</identifier><identifier>DOI: 10.1007/s10208-021-09540-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Computer Science ; Differential equations ; Economics ; Functions, Orthogonal ; Linear and Multilinear Algebras ; Math Applications in Computer Science ; Mathematical analysis ; Mathematical research ; Mathematics ; Mathematics and Statistics ; Matrix Theory ; Numerical Analysis ; Polynomials ; Singularity (mathematics) ; Weighting functions</subject><ispartof>Foundations of computational mathematics, 2023-02, Vol.23 (1), p.1-31</ispartof><rights>The Author(s) 2021</rights><rights>COPYRIGHT 2023 Springer</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-c85319f3e6b5365ea3240c40f611ca853b1a206d86050c8c7fce9c600666a1723</citedby><cites>FETCH-LOGICAL-c502t-c85319f3e6b5365ea3240c40f611ca853b1a206d86050c8c7fce9c600666a1723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10208-021-09540-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10208-021-09540-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Fasondini, Marco</creatorcontrib><creatorcontrib>Olver, Sheehan</creatorcontrib><creatorcontrib>Xu, Yuan</creatorcontrib><title>Orthogonal Polynomials on Planar Cubic Curves</title><title>Foundations of computational mathematics</title><addtitle>Found Comput Math</addtitle><description>Orthogonal polynomials in two variables on cubic curves are considered. For an integral with respect to an appropriate weight function defined on a cubic curve, an explicit basis of orthogonal polynomials is constructed in terms of two families of orthogonal polynomials in one variable. We show that these orthogonal polynomials can be used to approximate functions with cubic and square root singularities, and demonstrate their usage for solving differential equations with singular solutions.</description><subject>Applications of Mathematics</subject><subject>Computer Science</subject><subject>Differential equations</subject><subject>Economics</subject><subject>Functions, Orthogonal</subject><subject>Linear and Multilinear Algebras</subject><subject>Math Applications in Computer Science</subject><subject>Mathematical analysis</subject><subject>Mathematical research</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix Theory</subject><subject>Numerical Analysis</subject><subject>Polynomials</subject><subject>Singularity (mathematics)</subject><subject>Weighting functions</subject><issn>1615-3375</issn><issn>1615-3383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kV1LwzAUhosoOKd_wKuCV15kniRN2l6O4cdg4PDjOmRZWjvaZCatc__eaMUxGHIgCTnPcwh5o-gSwwgDpDceA4EMAcEIcpYA2hxFA8wxQ5Rm9PjvnLLT6Mz7FQBmOU4GEXp07ZstrZF1PLf11timkrWPrYnntTTSxZNuUamwug_tz6OTInT1xe8-jF7vbl8mD2j2eD-djGdIMSAtUhmjOC-o5gtGOdOSkgRUAgXHWMnQXGBJgC8zDgxUptJC6VxxAM65xCmhw-iqn7t29r3TvhUr27nwRi9ImiaMA83yHVXKWovKFLZ1UjWVV2KcUh6KAAQKHaBKbbSTtTW6qML1Hj86wIda6qZSB4XrPSEwrf5sS9l5L6bPT_ss6VnlrPdOF2Ltqka6rcAgvpMUfZIiJCl-khSbINFe8gE2pXa73_jH-gLVfpvt</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Fasondini, Marco</creator><creator>Olver, Sheehan</creator><creator>Xu, Yuan</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230201</creationdate><title>Orthogonal Polynomials on Planar Cubic Curves</title><author>Fasondini, Marco ; Olver, Sheehan ; Xu, Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-c85319f3e6b5365ea3240c40f611ca853b1a206d86050c8c7fce9c600666a1723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Mathematics</topic><topic>Computer Science</topic><topic>Differential equations</topic><topic>Economics</topic><topic>Functions, Orthogonal</topic><topic>Linear and Multilinear Algebras</topic><topic>Math Applications in Computer Science</topic><topic>Mathematical analysis</topic><topic>Mathematical research</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix Theory</topic><topic>Numerical Analysis</topic><topic>Polynomials</topic><topic>Singularity (mathematics)</topic><topic>Weighting functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fasondini, Marco</creatorcontrib><creatorcontrib>Olver, Sheehan</creatorcontrib><creatorcontrib>Xu, Yuan</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Foundations of computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fasondini, Marco</au><au>Olver, Sheehan</au><au>Xu, Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orthogonal Polynomials on Planar Cubic Curves</atitle><jtitle>Foundations of computational mathematics</jtitle><stitle>Found Comput Math</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>23</volume><issue>1</issue><spage>1</spage><epage>31</epage><pages>1-31</pages><issn>1615-3375</issn><eissn>1615-3383</eissn><abstract>Orthogonal polynomials in two variables on cubic curves are considered. For an integral with respect to an appropriate weight function defined on a cubic curve, an explicit basis of orthogonal polynomials is constructed in terms of two families of orthogonal polynomials in one variable. We show that these orthogonal polynomials can be used to approximate functions with cubic and square root singularities, and demonstrate their usage for solving differential equations with singular solutions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10208-021-09540-w</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-3375 |
ispartof | Foundations of computational mathematics, 2023-02, Vol.23 (1), p.1-31 |
issn | 1615-3375 1615-3383 |
language | eng |
recordid | cdi_proquest_journals_2774560389 |
source | Springer Nature - Complete Springer Journals |
subjects | Applications of Mathematics Computer Science Differential equations Economics Functions, Orthogonal Linear and Multilinear Algebras Math Applications in Computer Science Mathematical analysis Mathematical research Mathematics Mathematics and Statistics Matrix Theory Numerical Analysis Polynomials Singularity (mathematics) Weighting functions |
title | Orthogonal Polynomials on Planar Cubic Curves |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A50%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orthogonal%20Polynomials%20on%20Planar%20Cubic%20Curves&rft.jtitle=Foundations%20of%20computational%20mathematics&rft.au=Fasondini,%20Marco&rft.date=2023-02-01&rft.volume=23&rft.issue=1&rft.spage=1&rft.epage=31&rft.pages=1-31&rft.issn=1615-3375&rft.eissn=1615-3383&rft_id=info:doi/10.1007/s10208-021-09540-w&rft_dat=%3Cgale_proqu%3EA736363200%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774560389&rft_id=info:pmid/&rft_galeid=A736363200&rfr_iscdi=true |