Prediction of riverflow using bivariate extreme value distribution with composite likelihood approach

Geographically, there is not much difference between the annual maximum streamflow between neighbouring sites. Consequently, inter-site dependency should be taken into account for the analysis.The objective of this study is to model the extreme river flow considering the dependence between sites. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Roslan, Razira Aniza, Hassan, Suriani, Ghazali, Khadizah, Yusoff, Rubena, Gabda, Darmesah
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2500
creator Roslan, Razira Aniza
Hassan, Suriani
Ghazali, Khadizah
Yusoff, Rubena
Gabda, Darmesah
description Geographically, there is not much difference between the annual maximum streamflow between neighbouring sites. Consequently, inter-site dependency should be taken into account for the analysis.The objective of this study is to model the extreme river flow considering the dependence between sites. This study uses an annual maximum river flow (m3s-l) data at five (5) selected stations in Sabah with a sample size of 29 observed from 1988 to 2016. We applied the multivariate extreme value distributions to capture the dependencies of riverflows at neighbouring sites. We build a joint model of the bivariate logistic extreme distribution of the full likelihood function based on the pairwise joint estimation using the composite likelihood approach. The result shows that the bivariate logistics distribution is an appropriate model for the extreme river flow. We also forecast that the return level of the maximum river flow is increasing consistently but is not expected to exceed the maximum level once every 100 years.
doi_str_mv 10.1063/5.0111260
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2774338863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2774338863</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1680-900bd23682435367432421f8fe81f77c3d51d387abf9970987c1961bf32f6fc93</originalsourceid><addsrcrecordid>eNotkMtOwzAURC0EEqWw4A8ssUNK8bUTP5ao4iUhwQIkdpbj2NQlrYOdtPD3pLSr2ZyZuXcQugQyA8LZTTUjAEA5OUITqCooBAd-jCaEqLKgJfs4RWc5LwmhSgg5Qe41uSbYPsQ1jh6nsHHJt3GLhxzWn7gOG5OC6R12P31yK4c3ph0cbkLuU6iHf9829Ats46qLOYxkG75cGxYxNth0XYrGLs7RiTdtdhcHnaL3-7u3-WPx_PLwNL99LjrgkhSKkLqhjMvx0IpxUTJaUvDSOwleCMuaChomham9UoIoKSwoDrVn1HNvFZuiq33uWPs9uNzrZRzSeqzUVIxxTErORup6T2UberN7QXcprEz61UD0bkZd6cOM7A9pumVB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2774338863</pqid></control><display><type>conference_proceeding</type><title>Prediction of riverflow using bivariate extreme value distribution with composite likelihood approach</title><source>AIP Journals Complete</source><creator>Roslan, Razira Aniza ; Hassan, Suriani ; Ghazali, Khadizah ; Yusoff, Rubena ; Gabda, Darmesah</creator><contributor>Embong, Ahmad Fadillah ; Shafie, Sharidan ; Hang, See Pheng ; Rahman, Haliza Abd ; Ahmad, Mohd Ali Khameini ; Shabri, Ani</contributor><creatorcontrib>Roslan, Razira Aniza ; Hassan, Suriani ; Ghazali, Khadizah ; Yusoff, Rubena ; Gabda, Darmesah ; Embong, Ahmad Fadillah ; Shafie, Sharidan ; Hang, See Pheng ; Rahman, Haliza Abd ; Ahmad, Mohd Ali Khameini ; Shabri, Ani</creatorcontrib><description>Geographically, there is not much difference between the annual maximum streamflow between neighbouring sites. Consequently, inter-site dependency should be taken into account for the analysis.The objective of this study is to model the extreme river flow considering the dependence between sites. This study uses an annual maximum river flow (m3s-l) data at five (5) selected stations in Sabah with a sample size of 29 observed from 1988 to 2016. We applied the multivariate extreme value distributions to capture the dependencies of riverflows at neighbouring sites. We build a joint model of the bivariate logistic extreme distribution of the full likelihood function based on the pairwise joint estimation using the composite likelihood approach. The result shows that the bivariate logistics distribution is an appropriate model for the extreme river flow. We also forecast that the return level of the maximum river flow is increasing consistently but is not expected to exceed the maximum level once every 100 years.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0111260</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Bivariate analysis ; Extreme values ; River flow ; Stream flow</subject><ispartof>AIP conference proceedings, 2023, Vol.2500 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0111260$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Embong, Ahmad Fadillah</contributor><contributor>Shafie, Sharidan</contributor><contributor>Hang, See Pheng</contributor><contributor>Rahman, Haliza Abd</contributor><contributor>Ahmad, Mohd Ali Khameini</contributor><contributor>Shabri, Ani</contributor><creatorcontrib>Roslan, Razira Aniza</creatorcontrib><creatorcontrib>Hassan, Suriani</creatorcontrib><creatorcontrib>Ghazali, Khadizah</creatorcontrib><creatorcontrib>Yusoff, Rubena</creatorcontrib><creatorcontrib>Gabda, Darmesah</creatorcontrib><title>Prediction of riverflow using bivariate extreme value distribution with composite likelihood approach</title><title>AIP conference proceedings</title><description>Geographically, there is not much difference between the annual maximum streamflow between neighbouring sites. Consequently, inter-site dependency should be taken into account for the analysis.The objective of this study is to model the extreme river flow considering the dependence between sites. This study uses an annual maximum river flow (m3s-l) data at five (5) selected stations in Sabah with a sample size of 29 observed from 1988 to 2016. We applied the multivariate extreme value distributions to capture the dependencies of riverflows at neighbouring sites. We build a joint model of the bivariate logistic extreme distribution of the full likelihood function based on the pairwise joint estimation using the composite likelihood approach. The result shows that the bivariate logistics distribution is an appropriate model for the extreme river flow. We also forecast that the return level of the maximum river flow is increasing consistently but is not expected to exceed the maximum level once every 100 years.</description><subject>Bivariate analysis</subject><subject>Extreme values</subject><subject>River flow</subject><subject>Stream flow</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkMtOwzAURC0EEqWw4A8ssUNK8bUTP5ao4iUhwQIkdpbj2NQlrYOdtPD3pLSr2ZyZuXcQugQyA8LZTTUjAEA5OUITqCooBAd-jCaEqLKgJfs4RWc5LwmhSgg5Qe41uSbYPsQ1jh6nsHHJt3GLhxzWn7gOG5OC6R12P31yK4c3ph0cbkLuU6iHf9829Ats46qLOYxkG75cGxYxNth0XYrGLs7RiTdtdhcHnaL3-7u3-WPx_PLwNL99LjrgkhSKkLqhjMvx0IpxUTJaUvDSOwleCMuaChomham9UoIoKSwoDrVn1HNvFZuiq33uWPs9uNzrZRzSeqzUVIxxTErORup6T2UberN7QXcprEz61UD0bkZd6cOM7A9pumVB</recordid><startdate>20230208</startdate><enddate>20230208</enddate><creator>Roslan, Razira Aniza</creator><creator>Hassan, Suriani</creator><creator>Ghazali, Khadizah</creator><creator>Yusoff, Rubena</creator><creator>Gabda, Darmesah</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230208</creationdate><title>Prediction of riverflow using bivariate extreme value distribution with composite likelihood approach</title><author>Roslan, Razira Aniza ; Hassan, Suriani ; Ghazali, Khadizah ; Yusoff, Rubena ; Gabda, Darmesah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1680-900bd23682435367432421f8fe81f77c3d51d387abf9970987c1961bf32f6fc93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bivariate analysis</topic><topic>Extreme values</topic><topic>River flow</topic><topic>Stream flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roslan, Razira Aniza</creatorcontrib><creatorcontrib>Hassan, Suriani</creatorcontrib><creatorcontrib>Ghazali, Khadizah</creatorcontrib><creatorcontrib>Yusoff, Rubena</creatorcontrib><creatorcontrib>Gabda, Darmesah</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roslan, Razira Aniza</au><au>Hassan, Suriani</au><au>Ghazali, Khadizah</au><au>Yusoff, Rubena</au><au>Gabda, Darmesah</au><au>Embong, Ahmad Fadillah</au><au>Shafie, Sharidan</au><au>Hang, See Pheng</au><au>Rahman, Haliza Abd</au><au>Ahmad, Mohd Ali Khameini</au><au>Shabri, Ani</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Prediction of riverflow using bivariate extreme value distribution with composite likelihood approach</atitle><btitle>AIP conference proceedings</btitle><date>2023-02-08</date><risdate>2023</risdate><volume>2500</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Geographically, there is not much difference between the annual maximum streamflow between neighbouring sites. Consequently, inter-site dependency should be taken into account for the analysis.The objective of this study is to model the extreme river flow considering the dependence between sites. This study uses an annual maximum river flow (m3s-l) data at five (5) selected stations in Sabah with a sample size of 29 observed from 1988 to 2016. We applied the multivariate extreme value distributions to capture the dependencies of riverflows at neighbouring sites. We build a joint model of the bivariate logistic extreme distribution of the full likelihood function based on the pairwise joint estimation using the composite likelihood approach. The result shows that the bivariate logistics distribution is an appropriate model for the extreme river flow. We also forecast that the return level of the maximum river flow is increasing consistently but is not expected to exceed the maximum level once every 100 years.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0111260</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2023, Vol.2500 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2774338863
source AIP Journals Complete
subjects Bivariate analysis
Extreme values
River flow
Stream flow
title Prediction of riverflow using bivariate extreme value distribution with composite likelihood approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A46%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Prediction%20of%20riverflow%20using%20bivariate%20extreme%20value%20distribution%20with%20composite%20likelihood%20approach&rft.btitle=AIP%20conference%20proceedings&rft.au=Roslan,%20Razira%20Aniza&rft.date=2023-02-08&rft.volume=2500&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0111260&rft_dat=%3Cproquest_scita%3E2774338863%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774338863&rft_id=info:pmid/&rfr_iscdi=true