No-Reference Light Field Image Quality Assessment Using Four-Dimensional Sparse Transform
Light field imaging can simultaneously capture the intensity and direction information of light rays in the real world. Light field image (LFI) with four-dimensional (4D) data suffers from quality degradation in the process of compression, reconstruction and processing. How to evaluate the visual qu...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on multimedia 2023, Vol.25, p.457-472 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 472 |
---|---|
container_issue | |
container_start_page | 457 |
container_title | IEEE transactions on multimedia |
container_volume | 25 |
creator | Xiang, Jianjun Jiang, Gangyi Yu, Mei Jiang, Zhidi Ho, Yo-Sung |
description | Light field imaging can simultaneously capture the intensity and direction information of light rays in the real world. Light field image (LFI) with four-dimensional (4D) data suffers from quality degradation in the process of compression, reconstruction and processing. How to evaluate the visual quality of LFI is thought-provoking. This paper proposes a no-reference LFI quality assessment metric based on high-dimensional sparse transform. Firstly, LFI's sub-aperture gradient image array (SAGIA), which is still a 4D signal, is generated by high-pass filtering between adjacent SAIs. Then, SAGIA is transformed with 4D discrete cosine transform (4D-DCT). 4D-DCT coefficients of SAGIA can characterize the angular and spatial information of LFI. And the logarithmic amplitudes of the coefficients at the same position of SAGIA?s transformed 4D blocks are averaged as the coefficient energy. Subsequently, the 4D-DCT coefficients of SAGIA are divided into the spatial-angular frequency bands and spatial-angular orientation bands, and the corresponding energy features are extracted by converging the coefficient energy of the same band. In addition, the coefficients' amplitudes at the same position of blocks are fitted by the Weibull distribution. Then, the fitted parameters of each position are concatenated, and cropped with principal component analysis to obtain the compact features. Finally, the extracted features are pooled to predict the visual quality of the distorted LFIs. The experimental results demonstrate that the proposed method is more consistent with the subjective evaluation on three LFI databases, compared with the state-of-the-art image quality assessment methods and LFI quality assessment methods. |
doi_str_mv | 10.1109/TMM.2021.3127398 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2774332854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9613753</ieee_id><sourcerecordid>2774332854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-c460f42a1b8f7e52b3d4e26b973fd39e693dc9717362c15b0c17016720bbc3533</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvA89ZMsrtpjqVaLbSK2h48hWx2tqbsR022h_73Rlo8zWN4b-bxI-QW2AiAqYfVcjnijMNIAJdCjc_IAFQKCWNSnkedcZYoDuySXIWwZQzSjMkB-Xrtkg-s0GNrkS7c5runM4d1SeeN2SB935va9Qc6CQFDaLDt6Tq4dkNn3d4njy5ugutaU9PPnfEB6cqbNlSdb67JRWXqgDenOSTr2dNq-pIs3p7n08kisVxBn9g0Z1XKDRTjSmLGC1GmyPNCSVGVQmGuRGmVBClybiErmAXJIJecFYUVmRBDcn-8u_Pdzx5Dr7exWmwUNJcyFYKPszS62NFlfReCx0rvvGuMP2hg-g-gjgD1H0B9Ahgjd8eIQ8R_u8pByPj2F-7faz4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774332854</pqid></control><display><type>article</type><title>No-Reference Light Field Image Quality Assessment Using Four-Dimensional Sparse Transform</title><source>IEEE Electronic Library (IEL)</source><creator>Xiang, Jianjun ; Jiang, Gangyi ; Yu, Mei ; Jiang, Zhidi ; Ho, Yo-Sung</creator><creatorcontrib>Xiang, Jianjun ; Jiang, Gangyi ; Yu, Mei ; Jiang, Zhidi ; Ho, Yo-Sung</creatorcontrib><description>Light field imaging can simultaneously capture the intensity and direction information of light rays in the real world. Light field image (LFI) with four-dimensional (4D) data suffers from quality degradation in the process of compression, reconstruction and processing. How to evaluate the visual quality of LFI is thought-provoking. This paper proposes a no-reference LFI quality assessment metric based on high-dimensional sparse transform. Firstly, LFI's sub-aperture gradient image array (SAGIA), which is still a 4D signal, is generated by high-pass filtering between adjacent SAIs. Then, SAGIA is transformed with 4D discrete cosine transform (4D-DCT). 4D-DCT coefficients of SAGIA can characterize the angular and spatial information of LFI. And the logarithmic amplitudes of the coefficients at the same position of SAGIA?s transformed 4D blocks are averaged as the coefficient energy. Subsequently, the 4D-DCT coefficients of SAGIA are divided into the spatial-angular frequency bands and spatial-angular orientation bands, and the corresponding energy features are extracted by converging the coefficient energy of the same band. In addition, the coefficients' amplitudes at the same position of blocks are fitted by the Weibull distribution. Then, the fitted parameters of each position are concatenated, and cropped with principal component analysis to obtain the compact features. Finally, the extracted features are pooled to predict the visual quality of the distorted LFIs. The experimental results demonstrate that the proposed method is more consistent with the subjective evaluation on three LFI databases, compared with the state-of-the-art image quality assessment methods and LFI quality assessment methods.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2021.3127398</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>4D discrete cosine transform ; Amplitudes ; Coefficients ; Discrete cosine transform ; Evaluation ; Feature extraction ; Frequencies ; Frequency-domain analysis ; Image coding ; Image quality ; Image reconstruction ; Information filters ; Light field image quality assessment ; Luminous intensity ; no-reference ; Periodic structures ; Principal component analysis ; Principal components analysis ; Quality assessment ; Spatial data ; spatial-angular quality ; sub-aperture gradient image array ; Tensors ; Weibull distribution</subject><ispartof>IEEE transactions on multimedia, 2023, Vol.25, p.457-472</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-c460f42a1b8f7e52b3d4e26b973fd39e693dc9717362c15b0c17016720bbc3533</citedby><cites>FETCH-LOGICAL-c291t-c460f42a1b8f7e52b3d4e26b973fd39e693dc9717362c15b0c17016720bbc3533</cites><orcidid>0000-0002-3399-7076 ; 0000-0002-7220-1034 ; 0000-0002-2140-8756 ; 0000-0003-4896-9876 ; 0000-0002-9025-9520</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9613753$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9613753$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiang, Jianjun</creatorcontrib><creatorcontrib>Jiang, Gangyi</creatorcontrib><creatorcontrib>Yu, Mei</creatorcontrib><creatorcontrib>Jiang, Zhidi</creatorcontrib><creatorcontrib>Ho, Yo-Sung</creatorcontrib><title>No-Reference Light Field Image Quality Assessment Using Four-Dimensional Sparse Transform</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>Light field imaging can simultaneously capture the intensity and direction information of light rays in the real world. Light field image (LFI) with four-dimensional (4D) data suffers from quality degradation in the process of compression, reconstruction and processing. How to evaluate the visual quality of LFI is thought-provoking. This paper proposes a no-reference LFI quality assessment metric based on high-dimensional sparse transform. Firstly, LFI's sub-aperture gradient image array (SAGIA), which is still a 4D signal, is generated by high-pass filtering between adjacent SAIs. Then, SAGIA is transformed with 4D discrete cosine transform (4D-DCT). 4D-DCT coefficients of SAGIA can characterize the angular and spatial information of LFI. And the logarithmic amplitudes of the coefficients at the same position of SAGIA?s transformed 4D blocks are averaged as the coefficient energy. Subsequently, the 4D-DCT coefficients of SAGIA are divided into the spatial-angular frequency bands and spatial-angular orientation bands, and the corresponding energy features are extracted by converging the coefficient energy of the same band. In addition, the coefficients' amplitudes at the same position of blocks are fitted by the Weibull distribution. Then, the fitted parameters of each position are concatenated, and cropped with principal component analysis to obtain the compact features. Finally, the extracted features are pooled to predict the visual quality of the distorted LFIs. The experimental results demonstrate that the proposed method is more consistent with the subjective evaluation on three LFI databases, compared with the state-of-the-art image quality assessment methods and LFI quality assessment methods.</description><subject>4D discrete cosine transform</subject><subject>Amplitudes</subject><subject>Coefficients</subject><subject>Discrete cosine transform</subject><subject>Evaluation</subject><subject>Feature extraction</subject><subject>Frequencies</subject><subject>Frequency-domain analysis</subject><subject>Image coding</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Information filters</subject><subject>Light field image quality assessment</subject><subject>Luminous intensity</subject><subject>no-reference</subject><subject>Periodic structures</subject><subject>Principal component analysis</subject><subject>Principal components analysis</subject><subject>Quality assessment</subject><subject>Spatial data</subject><subject>spatial-angular quality</subject><subject>sub-aperture gradient image array</subject><subject>Tensors</subject><subject>Weibull distribution</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wUvA89ZMsrtpjqVaLbSK2h48hWx2tqbsR022h_73Rlo8zWN4b-bxI-QW2AiAqYfVcjnijMNIAJdCjc_IAFQKCWNSnkedcZYoDuySXIWwZQzSjMkB-Xrtkg-s0GNrkS7c5runM4d1SeeN2SB935va9Qc6CQFDaLDt6Tq4dkNn3d4njy5ugutaU9PPnfEB6cqbNlSdb67JRWXqgDenOSTr2dNq-pIs3p7n08kisVxBn9g0Z1XKDRTjSmLGC1GmyPNCSVGVQmGuRGmVBClybiErmAXJIJecFYUVmRBDcn-8u_Pdzx5Dr7exWmwUNJcyFYKPszS62NFlfReCx0rvvGuMP2hg-g-gjgD1H0B9Ahgjd8eIQ8R_u8pByPj2F-7faz4</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Xiang, Jianjun</creator><creator>Jiang, Gangyi</creator><creator>Yu, Mei</creator><creator>Jiang, Zhidi</creator><creator>Ho, Yo-Sung</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3399-7076</orcidid><orcidid>https://orcid.org/0000-0002-7220-1034</orcidid><orcidid>https://orcid.org/0000-0002-2140-8756</orcidid><orcidid>https://orcid.org/0000-0003-4896-9876</orcidid><orcidid>https://orcid.org/0000-0002-9025-9520</orcidid></search><sort><creationdate>2023</creationdate><title>No-Reference Light Field Image Quality Assessment Using Four-Dimensional Sparse Transform</title><author>Xiang, Jianjun ; Jiang, Gangyi ; Yu, Mei ; Jiang, Zhidi ; Ho, Yo-Sung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-c460f42a1b8f7e52b3d4e26b973fd39e693dc9717362c15b0c17016720bbc3533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>4D discrete cosine transform</topic><topic>Amplitudes</topic><topic>Coefficients</topic><topic>Discrete cosine transform</topic><topic>Evaluation</topic><topic>Feature extraction</topic><topic>Frequencies</topic><topic>Frequency-domain analysis</topic><topic>Image coding</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Information filters</topic><topic>Light field image quality assessment</topic><topic>Luminous intensity</topic><topic>no-reference</topic><topic>Periodic structures</topic><topic>Principal component analysis</topic><topic>Principal components analysis</topic><topic>Quality assessment</topic><topic>Spatial data</topic><topic>spatial-angular quality</topic><topic>sub-aperture gradient image array</topic><topic>Tensors</topic><topic>Weibull distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Jianjun</creatorcontrib><creatorcontrib>Jiang, Gangyi</creatorcontrib><creatorcontrib>Yu, Mei</creatorcontrib><creatorcontrib>Jiang, Zhidi</creatorcontrib><creatorcontrib>Ho, Yo-Sung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiang, Jianjun</au><au>Jiang, Gangyi</au><au>Yu, Mei</au><au>Jiang, Zhidi</au><au>Ho, Yo-Sung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>No-Reference Light Field Image Quality Assessment Using Four-Dimensional Sparse Transform</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2023</date><risdate>2023</risdate><volume>25</volume><spage>457</spage><epage>472</epage><pages>457-472</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>Light field imaging can simultaneously capture the intensity and direction information of light rays in the real world. Light field image (LFI) with four-dimensional (4D) data suffers from quality degradation in the process of compression, reconstruction and processing. How to evaluate the visual quality of LFI is thought-provoking. This paper proposes a no-reference LFI quality assessment metric based on high-dimensional sparse transform. Firstly, LFI's sub-aperture gradient image array (SAGIA), which is still a 4D signal, is generated by high-pass filtering between adjacent SAIs. Then, SAGIA is transformed with 4D discrete cosine transform (4D-DCT). 4D-DCT coefficients of SAGIA can characterize the angular and spatial information of LFI. And the logarithmic amplitudes of the coefficients at the same position of SAGIA?s transformed 4D blocks are averaged as the coefficient energy. Subsequently, the 4D-DCT coefficients of SAGIA are divided into the spatial-angular frequency bands and spatial-angular orientation bands, and the corresponding energy features are extracted by converging the coefficient energy of the same band. In addition, the coefficients' amplitudes at the same position of blocks are fitted by the Weibull distribution. Then, the fitted parameters of each position are concatenated, and cropped with principal component analysis to obtain the compact features. Finally, the extracted features are pooled to predict the visual quality of the distorted LFIs. The experimental results demonstrate that the proposed method is more consistent with the subjective evaluation on three LFI databases, compared with the state-of-the-art image quality assessment methods and LFI quality assessment methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2021.3127398</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3399-7076</orcidid><orcidid>https://orcid.org/0000-0002-7220-1034</orcidid><orcidid>https://orcid.org/0000-0002-2140-8756</orcidid><orcidid>https://orcid.org/0000-0003-4896-9876</orcidid><orcidid>https://orcid.org/0000-0002-9025-9520</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-9210 |
ispartof | IEEE transactions on multimedia, 2023, Vol.25, p.457-472 |
issn | 1520-9210 1941-0077 |
language | eng |
recordid | cdi_proquest_journals_2774332854 |
source | IEEE Electronic Library (IEL) |
subjects | 4D discrete cosine transform Amplitudes Coefficients Discrete cosine transform Evaluation Feature extraction Frequencies Frequency-domain analysis Image coding Image quality Image reconstruction Information filters Light field image quality assessment Luminous intensity no-reference Periodic structures Principal component analysis Principal components analysis Quality assessment Spatial data spatial-angular quality sub-aperture gradient image array Tensors Weibull distribution |
title | No-Reference Light Field Image Quality Assessment Using Four-Dimensional Sparse Transform |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A01%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=No-Reference%20Light%20Field%20Image%20Quality%20Assessment%20Using%20Four-Dimensional%20Sparse%20Transform&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Xiang,%20Jianjun&rft.date=2023&rft.volume=25&rft.spage=457&rft.epage=472&rft.pages=457-472&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2021.3127398&rft_dat=%3Cproquest_RIE%3E2774332854%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774332854&rft_id=info:pmid/&rft_ieee_id=9613753&rfr_iscdi=true |