Weakly Supervised Instance Segmentation by Exploring Entire Object Regions

Weakly supervised instance segmentation with image-level class supervision is a challenging task as it associates the highest-level instances to the lowest-level appearance. Previous approaches for the task utilize classification networks to obtain rough discriminative parts as seed regions and use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on multimedia 2023, Vol.25, p.352-363
Hauptverfasser: Zhang, Ke, Yuan, Chun, Zhu, Yiming, Jiang, Yong, Luo, Lishu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 363
container_issue
container_start_page 352
container_title IEEE transactions on multimedia
container_volume 25
creator Zhang, Ke
Yuan, Chun
Zhu, Yiming
Jiang, Yong
Luo, Lishu
description Weakly supervised instance segmentation with image-level class supervision is a challenging task as it associates the highest-level instances to the lowest-level appearance. Previous approaches for the task utilize classification networks to obtain rough discriminative parts as seed regions and use distance as a metric to cluster pixels of the same instances. Unlike previous approaches, we provide a novel self-supervised joint learning framework as the basic network and consider the clustering problem as calculating the probability that pixels belong to each instance. To this end, we propose our self-supervised joint learning two-stream network (SJLT Net) to finish this task. In the first stream, we leverage a joint learning framework to implement image-level supervised semantic segmentation with self-supervised saliency detection. In the second stream, we propose a Center Detection Network to detect different instances' centers with the gaussian loss function to cluster instances pixels. Besides, an integration module is utilized to combine information of both streams and get precise pseudo instances labels. Our approach generates pseudo instance segmentation labels of training images, which are used to train a fully supervised model. Our model achieves excellent performance on the PASCAL VOC 2012 dataset, surpassing the best baseline trained with the same labels by 4.6\% AP^r_{50} on the train set and 2.6\% AP^r_{50} on the validation set.
doi_str_mv 10.1109/TMM.2021.3126430
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2774332756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9612036</ieee_id><sourcerecordid>2774332756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-836c9abfeb7a962ce409dd3d63de9086d498b129610ee76226620fccb3ec2faf3</originalsourceid><addsrcrecordid>eNo9kEFLAzEQRoMoWKt3wUvA89bJZJs0RylVKy0FW_EYstnZsrXdXZOt2H_vSounmcP7vhkeY7cCBkKAeVjN5wMEFAMpUKUSzlhPmFQkAFqfd_sQITEo4JJdxbgBEOkQdI-9fpD73B74ct9Q-C4j5XxaxdZVnviS1juqWteWdcWzA5_8NNs6lNWaT6q2DMQX2YZ8y99o3RHxml0Ubhvp5jT77P1pshq_JLPF83T8OEs8GtEmI6m8cVlBmXZGoacUTJ7LXMmcDIxUnppRJtAoAURaISqFUHifSfJYuEL22f2xtwn1155iazf1PlTdSYtap1KiHqqOgiPlQx1joMI2ody5cLAC7J8x2xmzf8bsyVgXuTtGSiL6x7tHEKSSv-WhZ1I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774332756</pqid></control><display><type>article</type><title>Weakly Supervised Instance Segmentation by Exploring Entire Object Regions</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Ke ; Yuan, Chun ; Zhu, Yiming ; Jiang, Yong ; Luo, Lishu</creator><creatorcontrib>Zhang, Ke ; Yuan, Chun ; Zhu, Yiming ; Jiang, Yong ; Luo, Lishu</creatorcontrib><description><![CDATA[Weakly supervised instance segmentation with image-level class supervision is a challenging task as it associates the highest-level instances to the lowest-level appearance. Previous approaches for the task utilize classification networks to obtain rough discriminative parts as seed regions and use distance as a metric to cluster pixels of the same instances. Unlike previous approaches, we provide a novel self-supervised joint learning framework as the basic network and consider the clustering problem as calculating the probability that pixels belong to each instance. To this end, we propose our self-supervised joint learning two-stream network (SJLT Net) to finish this task. In the first stream, we leverage a joint learning framework to implement image-level supervised semantic segmentation with self-supervised saliency detection. In the second stream, we propose a Center Detection Network to detect different instances' centers with the gaussian loss function to cluster instances pixels. Besides, an integration module is utilized to combine information of both streams and get precise pseudo instances labels. Our approach generates pseudo instance segmentation labels of training images, which are used to train a fully supervised model. Our model achieves excellent performance on the PASCAL VOC 2012 dataset, surpassing the best baseline trained with the same labels by 4.6<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> <inline-formula><tex-math notation="LaTeX">AP^r_{50}</tex-math></inline-formula> on the train set and 2.6<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> <inline-formula><tex-math notation="LaTeX">AP^r_{50}</tex-math></inline-formula> on the validation set.]]></description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2021.3126430</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>center detection ; Clustering ; Image segmentation ; Instance segmentation ; integration module ; Labels ; Learning ; Location awareness ; Pixels ; pseudo instance segmentation labels ; Saliency detection ; Semantics ; Streaming media ; Task analysis ; Training ; two-stream network ; Weakly supervised learning</subject><ispartof>IEEE transactions on multimedia, 2023, Vol.25, p.352-363</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-836c9abfeb7a962ce409dd3d63de9086d498b129610ee76226620fccb3ec2faf3</citedby><cites>FETCH-LOGICAL-c291t-836c9abfeb7a962ce409dd3d63de9086d498b129610ee76226620fccb3ec2faf3</cites><orcidid>0000-0002-4260-1395 ; 0000-0002-3590-6676 ; 0000-0003-2415-1519</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9612036$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,4010,27904,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9612036$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Yuan, Chun</creatorcontrib><creatorcontrib>Zhu, Yiming</creatorcontrib><creatorcontrib>Jiang, Yong</creatorcontrib><creatorcontrib>Luo, Lishu</creatorcontrib><title>Weakly Supervised Instance Segmentation by Exploring Entire Object Regions</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description><![CDATA[Weakly supervised instance segmentation with image-level class supervision is a challenging task as it associates the highest-level instances to the lowest-level appearance. Previous approaches for the task utilize classification networks to obtain rough discriminative parts as seed regions and use distance as a metric to cluster pixels of the same instances. Unlike previous approaches, we provide a novel self-supervised joint learning framework as the basic network and consider the clustering problem as calculating the probability that pixels belong to each instance. To this end, we propose our self-supervised joint learning two-stream network (SJLT Net) to finish this task. In the first stream, we leverage a joint learning framework to implement image-level supervised semantic segmentation with self-supervised saliency detection. In the second stream, we propose a Center Detection Network to detect different instances' centers with the gaussian loss function to cluster instances pixels. Besides, an integration module is utilized to combine information of both streams and get precise pseudo instances labels. Our approach generates pseudo instance segmentation labels of training images, which are used to train a fully supervised model. Our model achieves excellent performance on the PASCAL VOC 2012 dataset, surpassing the best baseline trained with the same labels by 4.6<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> <inline-formula><tex-math notation="LaTeX">AP^r_{50}</tex-math></inline-formula> on the train set and 2.6<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> <inline-formula><tex-math notation="LaTeX">AP^r_{50}</tex-math></inline-formula> on the validation set.]]></description><subject>center detection</subject><subject>Clustering</subject><subject>Image segmentation</subject><subject>Instance segmentation</subject><subject>integration module</subject><subject>Labels</subject><subject>Learning</subject><subject>Location awareness</subject><subject>Pixels</subject><subject>pseudo instance segmentation labels</subject><subject>Saliency detection</subject><subject>Semantics</subject><subject>Streaming media</subject><subject>Task analysis</subject><subject>Training</subject><subject>two-stream network</subject><subject>Weakly supervised learning</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLAzEQRoMoWKt3wUvA89bJZJs0RylVKy0FW_EYstnZsrXdXZOt2H_vSounmcP7vhkeY7cCBkKAeVjN5wMEFAMpUKUSzlhPmFQkAFqfd_sQITEo4JJdxbgBEOkQdI-9fpD73B74ct9Q-C4j5XxaxdZVnviS1juqWteWdcWzA5_8NNs6lNWaT6q2DMQX2YZ8y99o3RHxml0Ubhvp5jT77P1pshq_JLPF83T8OEs8GtEmI6m8cVlBmXZGoacUTJ7LXMmcDIxUnppRJtAoAURaISqFUHifSfJYuEL22f2xtwn1155iazf1PlTdSYtap1KiHqqOgiPlQx1joMI2ody5cLAC7J8x2xmzf8bsyVgXuTtGSiL6x7tHEKSSv-WhZ1I</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Zhang, Ke</creator><creator>Yuan, Chun</creator><creator>Zhu, Yiming</creator><creator>Jiang, Yong</creator><creator>Luo, Lishu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4260-1395</orcidid><orcidid>https://orcid.org/0000-0002-3590-6676</orcidid><orcidid>https://orcid.org/0000-0003-2415-1519</orcidid></search><sort><creationdate>2023</creationdate><title>Weakly Supervised Instance Segmentation by Exploring Entire Object Regions</title><author>Zhang, Ke ; Yuan, Chun ; Zhu, Yiming ; Jiang, Yong ; Luo, Lishu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-836c9abfeb7a962ce409dd3d63de9086d498b129610ee76226620fccb3ec2faf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>center detection</topic><topic>Clustering</topic><topic>Image segmentation</topic><topic>Instance segmentation</topic><topic>integration module</topic><topic>Labels</topic><topic>Learning</topic><topic>Location awareness</topic><topic>Pixels</topic><topic>pseudo instance segmentation labels</topic><topic>Saliency detection</topic><topic>Semantics</topic><topic>Streaming media</topic><topic>Task analysis</topic><topic>Training</topic><topic>two-stream network</topic><topic>Weakly supervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Yuan, Chun</creatorcontrib><creatorcontrib>Zhu, Yiming</creatorcontrib><creatorcontrib>Jiang, Yong</creatorcontrib><creatorcontrib>Luo, Lishu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Ke</au><au>Yuan, Chun</au><au>Zhu, Yiming</au><au>Jiang, Yong</au><au>Luo, Lishu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weakly Supervised Instance Segmentation by Exploring Entire Object Regions</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2023</date><risdate>2023</risdate><volume>25</volume><spage>352</spage><epage>363</epage><pages>352-363</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract><![CDATA[Weakly supervised instance segmentation with image-level class supervision is a challenging task as it associates the highest-level instances to the lowest-level appearance. Previous approaches for the task utilize classification networks to obtain rough discriminative parts as seed regions and use distance as a metric to cluster pixels of the same instances. Unlike previous approaches, we provide a novel self-supervised joint learning framework as the basic network and consider the clustering problem as calculating the probability that pixels belong to each instance. To this end, we propose our self-supervised joint learning two-stream network (SJLT Net) to finish this task. In the first stream, we leverage a joint learning framework to implement image-level supervised semantic segmentation with self-supervised saliency detection. In the second stream, we propose a Center Detection Network to detect different instances' centers with the gaussian loss function to cluster instances pixels. Besides, an integration module is utilized to combine information of both streams and get precise pseudo instances labels. Our approach generates pseudo instance segmentation labels of training images, which are used to train a fully supervised model. Our model achieves excellent performance on the PASCAL VOC 2012 dataset, surpassing the best baseline trained with the same labels by 4.6<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> <inline-formula><tex-math notation="LaTeX">AP^r_{50}</tex-math></inline-formula> on the train set and 2.6<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> <inline-formula><tex-math notation="LaTeX">AP^r_{50}</tex-math></inline-formula> on the validation set.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2021.3126430</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4260-1395</orcidid><orcidid>https://orcid.org/0000-0002-3590-6676</orcidid><orcidid>https://orcid.org/0000-0003-2415-1519</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-9210
ispartof IEEE transactions on multimedia, 2023, Vol.25, p.352-363
issn 1520-9210
1941-0077
language eng
recordid cdi_proquest_journals_2774332756
source IEEE Electronic Library (IEL)
subjects center detection
Clustering
Image segmentation
Instance segmentation
integration module
Labels
Learning
Location awareness
Pixels
pseudo instance segmentation labels
Saliency detection
Semantics
Streaming media
Task analysis
Training
two-stream network
Weakly supervised learning
title Weakly Supervised Instance Segmentation by Exploring Entire Object Regions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T23%3A58%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weakly%20Supervised%20Instance%20Segmentation%20by%20Exploring%20Entire%20Object%20Regions&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Zhang,%20Ke&rft.date=2023&rft.volume=25&rft.spage=352&rft.epage=363&rft.pages=352-363&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2021.3126430&rft_dat=%3Cproquest_RIE%3E2774332756%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774332756&rft_id=info:pmid/&rft_ieee_id=9612036&rfr_iscdi=true