Weakly Supervised Instance Segmentation by Exploring Entire Object Regions
Weakly supervised instance segmentation with image-level class supervision is a challenging task as it associates the highest-level instances to the lowest-level appearance. Previous approaches for the task utilize classification networks to obtain rough discriminative parts as seed regions and use...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on multimedia 2023, Vol.25, p.352-363 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 363 |
---|---|
container_issue | |
container_start_page | 352 |
container_title | IEEE transactions on multimedia |
container_volume | 25 |
creator | Zhang, Ke Yuan, Chun Zhu, Yiming Jiang, Yong Luo, Lishu |
description | Weakly supervised instance segmentation with image-level class supervision is a challenging task as it associates the highest-level instances to the lowest-level appearance. Previous approaches for the task utilize classification networks to obtain rough discriminative parts as seed regions and use distance as a metric to cluster pixels of the same instances. Unlike previous approaches, we provide a novel self-supervised joint learning framework as the basic network and consider the clustering problem as calculating the probability that pixels belong to each instance. To this end, we propose our self-supervised joint learning two-stream network (SJLT Net) to finish this task. In the first stream, we leverage a joint learning framework to implement image-level supervised semantic segmentation with self-supervised saliency detection. In the second stream, we propose a Center Detection Network to detect different instances' centers with the gaussian loss function to cluster instances pixels. Besides, an integration module is utilized to combine information of both streams and get precise pseudo instances labels. Our approach generates pseudo instance segmentation labels of training images, which are used to train a fully supervised model. Our model achieves excellent performance on the PASCAL VOC 2012 dataset, surpassing the best baseline trained with the same labels by 4.6\% AP^r_{50} on the train set and 2.6\% AP^r_{50} on the validation set. |
doi_str_mv | 10.1109/TMM.2021.3126430 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2774332756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9612036</ieee_id><sourcerecordid>2774332756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-836c9abfeb7a962ce409dd3d63de9086d498b129610ee76226620fccb3ec2faf3</originalsourceid><addsrcrecordid>eNo9kEFLAzEQRoMoWKt3wUvA89bJZJs0RylVKy0FW_EYstnZsrXdXZOt2H_vSounmcP7vhkeY7cCBkKAeVjN5wMEFAMpUKUSzlhPmFQkAFqfd_sQITEo4JJdxbgBEOkQdI-9fpD73B74ct9Q-C4j5XxaxdZVnviS1juqWteWdcWzA5_8NNs6lNWaT6q2DMQX2YZ8y99o3RHxml0Ubhvp5jT77P1pshq_JLPF83T8OEs8GtEmI6m8cVlBmXZGoacUTJ7LXMmcDIxUnppRJtAoAURaISqFUHifSfJYuEL22f2xtwn1155iazf1PlTdSYtap1KiHqqOgiPlQx1joMI2ody5cLAC7J8x2xmzf8bsyVgXuTtGSiL6x7tHEKSSv-WhZ1I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774332756</pqid></control><display><type>article</type><title>Weakly Supervised Instance Segmentation by Exploring Entire Object Regions</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Ke ; Yuan, Chun ; Zhu, Yiming ; Jiang, Yong ; Luo, Lishu</creator><creatorcontrib>Zhang, Ke ; Yuan, Chun ; Zhu, Yiming ; Jiang, Yong ; Luo, Lishu</creatorcontrib><description><![CDATA[Weakly supervised instance segmentation with image-level class supervision is a challenging task as it associates the highest-level instances to the lowest-level appearance. Previous approaches for the task utilize classification networks to obtain rough discriminative parts as seed regions and use distance as a metric to cluster pixels of the same instances. Unlike previous approaches, we provide a novel self-supervised joint learning framework as the basic network and consider the clustering problem as calculating the probability that pixels belong to each instance. To this end, we propose our self-supervised joint learning two-stream network (SJLT Net) to finish this task. In the first stream, we leverage a joint learning framework to implement image-level supervised semantic segmentation with self-supervised saliency detection. In the second stream, we propose a Center Detection Network to detect different instances' centers with the gaussian loss function to cluster instances pixels. Besides, an integration module is utilized to combine information of both streams and get precise pseudo instances labels. Our approach generates pseudo instance segmentation labels of training images, which are used to train a fully supervised model. Our model achieves excellent performance on the PASCAL VOC 2012 dataset, surpassing the best baseline trained with the same labels by 4.6<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> <inline-formula><tex-math notation="LaTeX">AP^r_{50}</tex-math></inline-formula> on the train set and 2.6<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> <inline-formula><tex-math notation="LaTeX">AP^r_{50}</tex-math></inline-formula> on the validation set.]]></description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2021.3126430</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>center detection ; Clustering ; Image segmentation ; Instance segmentation ; integration module ; Labels ; Learning ; Location awareness ; Pixels ; pseudo instance segmentation labels ; Saliency detection ; Semantics ; Streaming media ; Task analysis ; Training ; two-stream network ; Weakly supervised learning</subject><ispartof>IEEE transactions on multimedia, 2023, Vol.25, p.352-363</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-836c9abfeb7a962ce409dd3d63de9086d498b129610ee76226620fccb3ec2faf3</citedby><cites>FETCH-LOGICAL-c291t-836c9abfeb7a962ce409dd3d63de9086d498b129610ee76226620fccb3ec2faf3</cites><orcidid>0000-0002-4260-1395 ; 0000-0002-3590-6676 ; 0000-0003-2415-1519</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9612036$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,4010,27904,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9612036$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Yuan, Chun</creatorcontrib><creatorcontrib>Zhu, Yiming</creatorcontrib><creatorcontrib>Jiang, Yong</creatorcontrib><creatorcontrib>Luo, Lishu</creatorcontrib><title>Weakly Supervised Instance Segmentation by Exploring Entire Object Regions</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description><![CDATA[Weakly supervised instance segmentation with image-level class supervision is a challenging task as it associates the highest-level instances to the lowest-level appearance. Previous approaches for the task utilize classification networks to obtain rough discriminative parts as seed regions and use distance as a metric to cluster pixels of the same instances. Unlike previous approaches, we provide a novel self-supervised joint learning framework as the basic network and consider the clustering problem as calculating the probability that pixels belong to each instance. To this end, we propose our self-supervised joint learning two-stream network (SJLT Net) to finish this task. In the first stream, we leverage a joint learning framework to implement image-level supervised semantic segmentation with self-supervised saliency detection. In the second stream, we propose a Center Detection Network to detect different instances' centers with the gaussian loss function to cluster instances pixels. Besides, an integration module is utilized to combine information of both streams and get precise pseudo instances labels. Our approach generates pseudo instance segmentation labels of training images, which are used to train a fully supervised model. Our model achieves excellent performance on the PASCAL VOC 2012 dataset, surpassing the best baseline trained with the same labels by 4.6<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> <inline-formula><tex-math notation="LaTeX">AP^r_{50}</tex-math></inline-formula> on the train set and 2.6<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> <inline-formula><tex-math notation="LaTeX">AP^r_{50}</tex-math></inline-formula> on the validation set.]]></description><subject>center detection</subject><subject>Clustering</subject><subject>Image segmentation</subject><subject>Instance segmentation</subject><subject>integration module</subject><subject>Labels</subject><subject>Learning</subject><subject>Location awareness</subject><subject>Pixels</subject><subject>pseudo instance segmentation labels</subject><subject>Saliency detection</subject><subject>Semantics</subject><subject>Streaming media</subject><subject>Task analysis</subject><subject>Training</subject><subject>two-stream network</subject><subject>Weakly supervised learning</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLAzEQRoMoWKt3wUvA89bJZJs0RylVKy0FW_EYstnZsrXdXZOt2H_vSounmcP7vhkeY7cCBkKAeVjN5wMEFAMpUKUSzlhPmFQkAFqfd_sQITEo4JJdxbgBEOkQdI-9fpD73B74ct9Q-C4j5XxaxdZVnviS1juqWteWdcWzA5_8NNs6lNWaT6q2DMQX2YZ8y99o3RHxml0Ubhvp5jT77P1pshq_JLPF83T8OEs8GtEmI6m8cVlBmXZGoacUTJ7LXMmcDIxUnppRJtAoAURaISqFUHifSfJYuEL22f2xtwn1155iazf1PlTdSYtap1KiHqqOgiPlQx1joMI2ody5cLAC7J8x2xmzf8bsyVgXuTtGSiL6x7tHEKSSv-WhZ1I</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Zhang, Ke</creator><creator>Yuan, Chun</creator><creator>Zhu, Yiming</creator><creator>Jiang, Yong</creator><creator>Luo, Lishu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4260-1395</orcidid><orcidid>https://orcid.org/0000-0002-3590-6676</orcidid><orcidid>https://orcid.org/0000-0003-2415-1519</orcidid></search><sort><creationdate>2023</creationdate><title>Weakly Supervised Instance Segmentation by Exploring Entire Object Regions</title><author>Zhang, Ke ; Yuan, Chun ; Zhu, Yiming ; Jiang, Yong ; Luo, Lishu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-836c9abfeb7a962ce409dd3d63de9086d498b129610ee76226620fccb3ec2faf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>center detection</topic><topic>Clustering</topic><topic>Image segmentation</topic><topic>Instance segmentation</topic><topic>integration module</topic><topic>Labels</topic><topic>Learning</topic><topic>Location awareness</topic><topic>Pixels</topic><topic>pseudo instance segmentation labels</topic><topic>Saliency detection</topic><topic>Semantics</topic><topic>Streaming media</topic><topic>Task analysis</topic><topic>Training</topic><topic>two-stream network</topic><topic>Weakly supervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Yuan, Chun</creatorcontrib><creatorcontrib>Zhu, Yiming</creatorcontrib><creatorcontrib>Jiang, Yong</creatorcontrib><creatorcontrib>Luo, Lishu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Ke</au><au>Yuan, Chun</au><au>Zhu, Yiming</au><au>Jiang, Yong</au><au>Luo, Lishu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weakly Supervised Instance Segmentation by Exploring Entire Object Regions</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2023</date><risdate>2023</risdate><volume>25</volume><spage>352</spage><epage>363</epage><pages>352-363</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract><![CDATA[Weakly supervised instance segmentation with image-level class supervision is a challenging task as it associates the highest-level instances to the lowest-level appearance. Previous approaches for the task utilize classification networks to obtain rough discriminative parts as seed regions and use distance as a metric to cluster pixels of the same instances. Unlike previous approaches, we provide a novel self-supervised joint learning framework as the basic network and consider the clustering problem as calculating the probability that pixels belong to each instance. To this end, we propose our self-supervised joint learning two-stream network (SJLT Net) to finish this task. In the first stream, we leverage a joint learning framework to implement image-level supervised semantic segmentation with self-supervised saliency detection. In the second stream, we propose a Center Detection Network to detect different instances' centers with the gaussian loss function to cluster instances pixels. Besides, an integration module is utilized to combine information of both streams and get precise pseudo instances labels. Our approach generates pseudo instance segmentation labels of training images, which are used to train a fully supervised model. Our model achieves excellent performance on the PASCAL VOC 2012 dataset, surpassing the best baseline trained with the same labels by 4.6<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> <inline-formula><tex-math notation="LaTeX">AP^r_{50}</tex-math></inline-formula> on the train set and 2.6<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> <inline-formula><tex-math notation="LaTeX">AP^r_{50}</tex-math></inline-formula> on the validation set.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2021.3126430</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4260-1395</orcidid><orcidid>https://orcid.org/0000-0002-3590-6676</orcidid><orcidid>https://orcid.org/0000-0003-2415-1519</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-9210 |
ispartof | IEEE transactions on multimedia, 2023, Vol.25, p.352-363 |
issn | 1520-9210 1941-0077 |
language | eng |
recordid | cdi_proquest_journals_2774332756 |
source | IEEE Electronic Library (IEL) |
subjects | center detection Clustering Image segmentation Instance segmentation integration module Labels Learning Location awareness Pixels pseudo instance segmentation labels Saliency detection Semantics Streaming media Task analysis Training two-stream network Weakly supervised learning |
title | Weakly Supervised Instance Segmentation by Exploring Entire Object Regions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T23%3A58%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weakly%20Supervised%20Instance%20Segmentation%20by%20Exploring%20Entire%20Object%20Regions&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Zhang,%20Ke&rft.date=2023&rft.volume=25&rft.spage=352&rft.epage=363&rft.pages=352-363&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2021.3126430&rft_dat=%3Cproquest_RIE%3E2774332756%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774332756&rft_id=info:pmid/&rft_ieee_id=9612036&rfr_iscdi=true |