An SBP-SAT FDTD Subgridding Method Using Staggered Yee's Grids Without Modifying Field Components for TM Analysis

A summation-by-parts simultaneous approximation term (SBP-SAT) finite-difference time-domain (FDTD) subgridding method is proposed to model geometrically fine structures in this article. Compared with other works, the proposed SBP-SAT FDTD method uses the staggered Yee's grid without adding or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on microwave theory and techniques 2023-02, Vol.71 (2), p.579-592
Hauptverfasser: Wang, Yuhui, Cheng, Yu, Wang, Xiang-Hua, Yang, Shunchuan, Chen, Zhizhang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 592
container_issue 2
container_start_page 579
container_title IEEE transactions on microwave theory and techniques
container_volume 71
creator Wang, Yuhui
Cheng, Yu
Wang, Xiang-Hua
Yang, Shunchuan
Chen, Zhizhang
description A summation-by-parts simultaneous approximation term (SBP-SAT) finite-difference time-domain (FDTD) subgridding method is proposed to model geometrically fine structures in this article. Compared with other works, the proposed SBP-SAT FDTD method uses the staggered Yee's grid without adding or modifying any field components through field extrapolation on the boundaries to make the discrete operators satisfy the SBP property. The accuracy of extrapolation keeps consistency with that of the second-order finite-difference scheme near the boundaries. In addition, the SATs are used to weakly enforce the tangential boundary conditions between multiple mesh blocks with different mesh sizes. With carefully designed interpolation matrices and selected free parameters of the SATs, no dissipation occurs in the whole computational domain. Therefore, its long-time stability is theoretically guaranteed. Four numerical examples are carried out to validate its effectiveness. Results show that the proposed SBP-SAT FDTD subgridding method is stable, accurate, efficient, and easy to implement based on the existing FDTD codes with only a few modifications.
doi_str_mv 10.1109/TMTT.2022.3205633
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2774321844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9897090</ieee_id><sourcerecordid>2774321844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-d9d7aaac4c3b3ee904cfa90e0ebe7ea94797352cf97cdc270d41c7be8150ad403</originalsourceid><addsrcrecordid>eNo9kE1Lw0AURQdRsFZ_gLgZcOEq9c1HOpllbW0VWhSaIq7CdOalprRJnUkW_fcmtLh6XDj38jiE3DMYMAb6OV2k6YAD5wPBIR4KcUF6LI5VpIcKLkkPgCWRlglck5sQtm2UMSQ98jsq6fLlM1qOUjqdpBO6bNYbXzhXlBu6wPqncnQVurCszWaDHh39RnwKdNZSgX4VLdLUdFG5Ij923LTAnaPjan-oSizrQPPK03RBR6XZHUMRbslVbnYB7863T1bT13T8Fs0_Zu_j0TyyXIs6ctopY4yVVqwFogZpc6MBAdeo0GiptBIxt7lW1lmuwElm1RoTFoNxEkSfPJ52D776bTDU2bZqfPtEyLhSUnCWSNlS7ERZX4XgMc8Ovtgbf8wYZJ3ZrDObdWazs9m283DqFIj4z-tEK9Ag_gAdN3SY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774321844</pqid></control><display><type>article</type><title>An SBP-SAT FDTD Subgridding Method Using Staggered Yee's Grids Without Modifying Field Components for TM Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Yuhui ; Cheng, Yu ; Wang, Xiang-Hua ; Yang, Shunchuan ; Chen, Zhizhang</creator><creatorcontrib>Wang, Yuhui ; Cheng, Yu ; Wang, Xiang-Hua ; Yang, Shunchuan ; Chen, Zhizhang</creatorcontrib><description>A summation-by-parts simultaneous approximation term (SBP-SAT) finite-difference time-domain (FDTD) subgridding method is proposed to model geometrically fine structures in this article. Compared with other works, the proposed SBP-SAT FDTD method uses the staggered Yee's grid without adding or modifying any field components through field extrapolation on the boundaries to make the discrete operators satisfy the SBP property. The accuracy of extrapolation keeps consistency with that of the second-order finite-difference scheme near the boundaries. In addition, the SATs are used to weakly enforce the tangential boundary conditions between multiple mesh blocks with different mesh sizes. With carefully designed interpolation matrices and selected free parameters of the SATs, no dissipation occurs in the whole computational domain. Therefore, its long-time stability is theoretically guaranteed. Four numerical examples are carried out to validate its effectiveness. Results show that the proposed SBP-SAT FDTD subgridding method is stable, accurate, efficient, and easy to implement based on the existing FDTD codes with only a few modifications.</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2022.3205633</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Boundary conditions ; Extrapolation ; Finite difference method ; Finite difference methods ; Finite difference time domain method ; Finite element method ; Finite-difference time-domain (FDTD) ; Interpolation ; Mathematical models ; Microwave theory and techniques ; Numerical stability ; Operators (mathematics) ; Power system stability ; projection operator ; stability ; Stability criteria ; subgridding ; summation-by-parts simultaneous approximation term (SBP-SAT) ; Time-domain analysis</subject><ispartof>IEEE transactions on microwave theory and techniques, 2023-02, Vol.71 (2), p.579-592</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-d9d7aaac4c3b3ee904cfa90e0ebe7ea94797352cf97cdc270d41c7be8150ad403</citedby><cites>FETCH-LOGICAL-c293t-d9d7aaac4c3b3ee904cfa90e0ebe7ea94797352cf97cdc270d41c7be8150ad403</cites><orcidid>0000-0003-1208-7329 ; 0000-0002-4190-3885 ; 0000-0001-5346-2514</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9897090$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9897090$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Yuhui</creatorcontrib><creatorcontrib>Cheng, Yu</creatorcontrib><creatorcontrib>Wang, Xiang-Hua</creatorcontrib><creatorcontrib>Yang, Shunchuan</creatorcontrib><creatorcontrib>Chen, Zhizhang</creatorcontrib><title>An SBP-SAT FDTD Subgridding Method Using Staggered Yee's Grids Without Modifying Field Components for TM Analysis</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>A summation-by-parts simultaneous approximation term (SBP-SAT) finite-difference time-domain (FDTD) subgridding method is proposed to model geometrically fine structures in this article. Compared with other works, the proposed SBP-SAT FDTD method uses the staggered Yee's grid without adding or modifying any field components through field extrapolation on the boundaries to make the discrete operators satisfy the SBP property. The accuracy of extrapolation keeps consistency with that of the second-order finite-difference scheme near the boundaries. In addition, the SATs are used to weakly enforce the tangential boundary conditions between multiple mesh blocks with different mesh sizes. With carefully designed interpolation matrices and selected free parameters of the SATs, no dissipation occurs in the whole computational domain. Therefore, its long-time stability is theoretically guaranteed. Four numerical examples are carried out to validate its effectiveness. Results show that the proposed SBP-SAT FDTD subgridding method is stable, accurate, efficient, and easy to implement based on the existing FDTD codes with only a few modifications.</description><subject>Boundary conditions</subject><subject>Extrapolation</subject><subject>Finite difference method</subject><subject>Finite difference methods</subject><subject>Finite difference time domain method</subject><subject>Finite element method</subject><subject>Finite-difference time-domain (FDTD)</subject><subject>Interpolation</subject><subject>Mathematical models</subject><subject>Microwave theory and techniques</subject><subject>Numerical stability</subject><subject>Operators (mathematics)</subject><subject>Power system stability</subject><subject>projection operator</subject><subject>stability</subject><subject>Stability criteria</subject><subject>subgridding</subject><subject>summation-by-parts simultaneous approximation term (SBP-SAT)</subject><subject>Time-domain analysis</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AURQdRsFZ_gLgZcOEq9c1HOpllbW0VWhSaIq7CdOalprRJnUkW_fcmtLh6XDj38jiE3DMYMAb6OV2k6YAD5wPBIR4KcUF6LI5VpIcKLkkPgCWRlglck5sQtm2UMSQ98jsq6fLlM1qOUjqdpBO6bNYbXzhXlBu6wPqncnQVurCszWaDHh39RnwKdNZSgX4VLdLUdFG5Ij923LTAnaPjan-oSizrQPPK03RBR6XZHUMRbslVbnYB7863T1bT13T8Fs0_Zu_j0TyyXIs6ctopY4yVVqwFogZpc6MBAdeo0GiptBIxt7lW1lmuwElm1RoTFoNxEkSfPJ52D776bTDU2bZqfPtEyLhSUnCWSNlS7ERZX4XgMc8Ovtgbf8wYZJ3ZrDObdWazs9m283DqFIj4z-tEK9Ag_gAdN3SY</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Wang, Yuhui</creator><creator>Cheng, Yu</creator><creator>Wang, Xiang-Hua</creator><creator>Yang, Shunchuan</creator><creator>Chen, Zhizhang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1208-7329</orcidid><orcidid>https://orcid.org/0000-0002-4190-3885</orcidid><orcidid>https://orcid.org/0000-0001-5346-2514</orcidid></search><sort><creationdate>20230201</creationdate><title>An SBP-SAT FDTD Subgridding Method Using Staggered Yee's Grids Without Modifying Field Components for TM Analysis</title><author>Wang, Yuhui ; Cheng, Yu ; Wang, Xiang-Hua ; Yang, Shunchuan ; Chen, Zhizhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-d9d7aaac4c3b3ee904cfa90e0ebe7ea94797352cf97cdc270d41c7be8150ad403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Boundary conditions</topic><topic>Extrapolation</topic><topic>Finite difference method</topic><topic>Finite difference methods</topic><topic>Finite difference time domain method</topic><topic>Finite element method</topic><topic>Finite-difference time-domain (FDTD)</topic><topic>Interpolation</topic><topic>Mathematical models</topic><topic>Microwave theory and techniques</topic><topic>Numerical stability</topic><topic>Operators (mathematics)</topic><topic>Power system stability</topic><topic>projection operator</topic><topic>stability</topic><topic>Stability criteria</topic><topic>subgridding</topic><topic>summation-by-parts simultaneous approximation term (SBP-SAT)</topic><topic>Time-domain analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yuhui</creatorcontrib><creatorcontrib>Cheng, Yu</creatorcontrib><creatorcontrib>Wang, Xiang-Hua</creatorcontrib><creatorcontrib>Yang, Shunchuan</creatorcontrib><creatorcontrib>Chen, Zhizhang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Yuhui</au><au>Cheng, Yu</au><au>Wang, Xiang-Hua</au><au>Yang, Shunchuan</au><au>Chen, Zhizhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An SBP-SAT FDTD Subgridding Method Using Staggered Yee's Grids Without Modifying Field Components for TM Analysis</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>71</volume><issue>2</issue><spage>579</spage><epage>592</epage><pages>579-592</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>A summation-by-parts simultaneous approximation term (SBP-SAT) finite-difference time-domain (FDTD) subgridding method is proposed to model geometrically fine structures in this article. Compared with other works, the proposed SBP-SAT FDTD method uses the staggered Yee's grid without adding or modifying any field components through field extrapolation on the boundaries to make the discrete operators satisfy the SBP property. The accuracy of extrapolation keeps consistency with that of the second-order finite-difference scheme near the boundaries. In addition, the SATs are used to weakly enforce the tangential boundary conditions between multiple mesh blocks with different mesh sizes. With carefully designed interpolation matrices and selected free parameters of the SATs, no dissipation occurs in the whole computational domain. Therefore, its long-time stability is theoretically guaranteed. Four numerical examples are carried out to validate its effectiveness. Results show that the proposed SBP-SAT FDTD subgridding method is stable, accurate, efficient, and easy to implement based on the existing FDTD codes with only a few modifications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMTT.2022.3205633</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1208-7329</orcidid><orcidid>https://orcid.org/0000-0002-4190-3885</orcidid><orcidid>https://orcid.org/0000-0001-5346-2514</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9480
ispartof IEEE transactions on microwave theory and techniques, 2023-02, Vol.71 (2), p.579-592
issn 0018-9480
1557-9670
language eng
recordid cdi_proquest_journals_2774321844
source IEEE Electronic Library (IEL)
subjects Boundary conditions
Extrapolation
Finite difference method
Finite difference methods
Finite difference time domain method
Finite element method
Finite-difference time-domain (FDTD)
Interpolation
Mathematical models
Microwave theory and techniques
Numerical stability
Operators (mathematics)
Power system stability
projection operator
stability
Stability criteria
subgridding
summation-by-parts simultaneous approximation term (SBP-SAT)
Time-domain analysis
title An SBP-SAT FDTD Subgridding Method Using Staggered Yee's Grids Without Modifying Field Components for TM Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T22%3A23%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20SBP-SAT%20FDTD%20Subgridding%20Method%20Using%20Staggered%20Yee's%20Grids%20Without%20Modifying%20Field%20Components%20for%20TM%20Analysis&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Wang,%20Yuhui&rft.date=2023-02-01&rft.volume=71&rft.issue=2&rft.spage=579&rft.epage=592&rft.pages=579-592&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2022.3205633&rft_dat=%3Cproquest_RIE%3E2774321844%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774321844&rft_id=info:pmid/&rft_ieee_id=9897090&rfr_iscdi=true