A Deep Learning-Based Indoor Odor Compass
Mobile robot-based odor source localization (OSL) has broad applications in various industrial and daily-life scenarios. To this end, a deep learning-based odor compass is designed in this work. Functionally, the designed odor compass is divided into three primary modules, which are the sensing modu...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2023, Vol.72, p.1-10 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 72 |
creator | Yan, Zheng Meng, Qing-Hao Jing, Tao Chen, Si-Wen Hou, Hui-Rang |
description | Mobile robot-based odor source localization (OSL) has broad applications in various industrial and daily-life scenarios. To this end, a deep learning-based odor compass is designed in this work. Functionally, the designed odor compass is divided into three primary modules, which are the sensing module (i.e., a sensor array composed of four metal-oxide-semiconductor (MOS) gas sensors), the communication module, and the remote data processing module (i.e., a deep learning-based algorithm). In particular, a deep learning-based odor attention (DL-OA) model is proposed to realize an end-to-end odor source direction estimation (OSDE) based on the responses of gas sensor array. Moreover, the proposed DL-OA model adopts a separated spatial-temporal attention-based encoder-decoder structure. Furthermore, the average validation error in estimating the OSD in an indoor environment is 4.98°, essentially demonstrating the effectiveness of designed odor compass. |
doi_str_mv | 10.1109/TIM.2023.3238053 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2774319085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10026674</ieee_id><sourcerecordid>2774319085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-ff1242e54502c5185bddd3633fe7b031b49afdc83aede4c89ab3979ff0ac29253</originalsourceid><addsrcrecordid>eNpNkDtPwzAUhS0EEqGwMzBEYmJIuH7HYymvSkVdymw58TVqRZNgtwP_nkTpwHLP8p1zpY-QWwolpWAeN8uPkgHjJWe8AsnPSEal1IVRip2TDIBWhRFSXZKrlHYAoJXQGXmY58-Ifb5CF9tt-1U8uYQ-X7a-62K-9sNZdPvepXRNLoL7Tnhzyhn5fH3ZLN6L1fptuZivioZqeShCoEwwlEICayStZO2954rzgLoGTmthXPBNxR16FE1lXM2NNiGAa5hhks_I_bTbx-7niOlgd90xtsNLy7QWnBqoRgomqoldShGD7eN27-KvpWBHIXYQYkch9iRkqNxNlS0i_sOBKTXs_gECUloJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774319085</pqid></control><display><type>article</type><title>A Deep Learning-Based Indoor Odor Compass</title><source>IEEE Electronic Library (IEL)</source><creator>Yan, Zheng ; Meng, Qing-Hao ; Jing, Tao ; Chen, Si-Wen ; Hou, Hui-Rang</creator><creatorcontrib>Yan, Zheng ; Meng, Qing-Hao ; Jing, Tao ; Chen, Si-Wen ; Hou, Hui-Rang</creatorcontrib><description>Mobile robot-based odor source localization (OSL) has broad applications in various industrial and daily-life scenarios. To this end, a deep learning-based odor compass is designed in this work. Functionally, the designed odor compass is divided into three primary modules, which are the sensing module (i.e., a sensor array composed of four metal-oxide-semiconductor (MOS) gas sensors), the communication module, and the remote data processing module (i.e., a deep learning-based algorithm). In particular, a deep learning-based odor attention (DL-OA) model is proposed to realize an end-to-end odor source direction estimation (OSDE) based on the responses of gas sensor array. Moreover, the proposed DL-OA model adopts a separated spatial-temporal attention-based encoder-decoder structure. Furthermore, the average validation error in estimating the OSD in an indoor environment is 4.98°, essentially demonstrating the effectiveness of designed odor compass.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2023.3238053</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Coders ; Compass ; Data processing ; Deep learning ; Encoders-Decoders ; Estimation ; Gas detectors ; Gas sensors ; Indoor environments ; Layout ; Machine learning ; Metal oxide semiconductors ; Modules ; odor compass ; odor source localization (OSL) ; Remote sensors ; Robot sensing systems ; Sensor arrays ; signal processing ; Wireless communication ; Wireless sensor networks</subject><ispartof>IEEE transactions on instrumentation and measurement, 2023, Vol.72, p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-ff1242e54502c5185bddd3633fe7b031b49afdc83aede4c89ab3979ff0ac29253</cites><orcidid>0000-0002-4608-273X ; 0000-0003-0806-6808 ; 0000-0002-9915-7088 ; 0000-0001-7003-8352 ; 0000-0001-7545-4283</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10026674$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10026674$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yan, Zheng</creatorcontrib><creatorcontrib>Meng, Qing-Hao</creatorcontrib><creatorcontrib>Jing, Tao</creatorcontrib><creatorcontrib>Chen, Si-Wen</creatorcontrib><creatorcontrib>Hou, Hui-Rang</creatorcontrib><title>A Deep Learning-Based Indoor Odor Compass</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Mobile robot-based odor source localization (OSL) has broad applications in various industrial and daily-life scenarios. To this end, a deep learning-based odor compass is designed in this work. Functionally, the designed odor compass is divided into three primary modules, which are the sensing module (i.e., a sensor array composed of four metal-oxide-semiconductor (MOS) gas sensors), the communication module, and the remote data processing module (i.e., a deep learning-based algorithm). In particular, a deep learning-based odor attention (DL-OA) model is proposed to realize an end-to-end odor source direction estimation (OSDE) based on the responses of gas sensor array. Moreover, the proposed DL-OA model adopts a separated spatial-temporal attention-based encoder-decoder structure. Furthermore, the average validation error in estimating the OSD in an indoor environment is 4.98°, essentially demonstrating the effectiveness of designed odor compass.</description><subject>Algorithms</subject><subject>Coders</subject><subject>Compass</subject><subject>Data processing</subject><subject>Deep learning</subject><subject>Encoders-Decoders</subject><subject>Estimation</subject><subject>Gas detectors</subject><subject>Gas sensors</subject><subject>Indoor environments</subject><subject>Layout</subject><subject>Machine learning</subject><subject>Metal oxide semiconductors</subject><subject>Modules</subject><subject>odor compass</subject><subject>odor source localization (OSL)</subject><subject>Remote sensors</subject><subject>Robot sensing systems</subject><subject>Sensor arrays</subject><subject>signal processing</subject><subject>Wireless communication</subject><subject>Wireless sensor networks</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkDtPwzAUhS0EEqGwMzBEYmJIuH7HYymvSkVdymw58TVqRZNgtwP_nkTpwHLP8p1zpY-QWwolpWAeN8uPkgHjJWe8AsnPSEal1IVRip2TDIBWhRFSXZKrlHYAoJXQGXmY58-Ifb5CF9tt-1U8uYQ-X7a-62K-9sNZdPvepXRNLoL7Tnhzyhn5fH3ZLN6L1fptuZivioZqeShCoEwwlEICayStZO2954rzgLoGTmthXPBNxR16FE1lXM2NNiGAa5hhks_I_bTbx-7niOlgd90xtsNLy7QWnBqoRgomqoldShGD7eN27-KvpWBHIXYQYkch9iRkqNxNlS0i_sOBKTXs_gECUloJ</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Yan, Zheng</creator><creator>Meng, Qing-Hao</creator><creator>Jing, Tao</creator><creator>Chen, Si-Wen</creator><creator>Hou, Hui-Rang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4608-273X</orcidid><orcidid>https://orcid.org/0000-0003-0806-6808</orcidid><orcidid>https://orcid.org/0000-0002-9915-7088</orcidid><orcidid>https://orcid.org/0000-0001-7003-8352</orcidid><orcidid>https://orcid.org/0000-0001-7545-4283</orcidid></search><sort><creationdate>2023</creationdate><title>A Deep Learning-Based Indoor Odor Compass</title><author>Yan, Zheng ; Meng, Qing-Hao ; Jing, Tao ; Chen, Si-Wen ; Hou, Hui-Rang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-ff1242e54502c5185bddd3633fe7b031b49afdc83aede4c89ab3979ff0ac29253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Coders</topic><topic>Compass</topic><topic>Data processing</topic><topic>Deep learning</topic><topic>Encoders-Decoders</topic><topic>Estimation</topic><topic>Gas detectors</topic><topic>Gas sensors</topic><topic>Indoor environments</topic><topic>Layout</topic><topic>Machine learning</topic><topic>Metal oxide semiconductors</topic><topic>Modules</topic><topic>odor compass</topic><topic>odor source localization (OSL)</topic><topic>Remote sensors</topic><topic>Robot sensing systems</topic><topic>Sensor arrays</topic><topic>signal processing</topic><topic>Wireless communication</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Zheng</creatorcontrib><creatorcontrib>Meng, Qing-Hao</creatorcontrib><creatorcontrib>Jing, Tao</creatorcontrib><creatorcontrib>Chen, Si-Wen</creatorcontrib><creatorcontrib>Hou, Hui-Rang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yan, Zheng</au><au>Meng, Qing-Hao</au><au>Jing, Tao</au><au>Chen, Si-Wen</au><au>Hou, Hui-Rang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Deep Learning-Based Indoor Odor Compass</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2023</date><risdate>2023</risdate><volume>72</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Mobile robot-based odor source localization (OSL) has broad applications in various industrial and daily-life scenarios. To this end, a deep learning-based odor compass is designed in this work. Functionally, the designed odor compass is divided into three primary modules, which are the sensing module (i.e., a sensor array composed of four metal-oxide-semiconductor (MOS) gas sensors), the communication module, and the remote data processing module (i.e., a deep learning-based algorithm). In particular, a deep learning-based odor attention (DL-OA) model is proposed to realize an end-to-end odor source direction estimation (OSDE) based on the responses of gas sensor array. Moreover, the proposed DL-OA model adopts a separated spatial-temporal attention-based encoder-decoder structure. Furthermore, the average validation error in estimating the OSD in an indoor environment is 4.98°, essentially demonstrating the effectiveness of designed odor compass.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2023.3238053</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4608-273X</orcidid><orcidid>https://orcid.org/0000-0003-0806-6808</orcidid><orcidid>https://orcid.org/0000-0002-9915-7088</orcidid><orcidid>https://orcid.org/0000-0001-7003-8352</orcidid><orcidid>https://orcid.org/0000-0001-7545-4283</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2023, Vol.72, p.1-10 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_proquest_journals_2774319085 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Coders Compass Data processing Deep learning Encoders-Decoders Estimation Gas detectors Gas sensors Indoor environments Layout Machine learning Metal oxide semiconductors Modules odor compass odor source localization (OSL) Remote sensors Robot sensing systems Sensor arrays signal processing Wireless communication Wireless sensor networks |
title | A Deep Learning-Based Indoor Odor Compass |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A21%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Deep%20Learning-Based%20Indoor%20Odor%20Compass&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Yan,%20Zheng&rft.date=2023&rft.volume=72&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2023.3238053&rft_dat=%3Cproquest_RIE%3E2774319085%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774319085&rft_id=info:pmid/&rft_ieee_id=10026674&rfr_iscdi=true |