A Deep Learning-Based Indoor Odor Compass

Mobile robot-based odor source localization (OSL) has broad applications in various industrial and daily-life scenarios. To this end, a deep learning-based odor compass is designed in this work. Functionally, the designed odor compass is divided into three primary modules, which are the sensing modu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2023, Vol.72, p.1-10
Hauptverfasser: Yan, Zheng, Meng, Qing-Hao, Jing, Tao, Chen, Si-Wen, Hou, Hui-Rang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 72
creator Yan, Zheng
Meng, Qing-Hao
Jing, Tao
Chen, Si-Wen
Hou, Hui-Rang
description Mobile robot-based odor source localization (OSL) has broad applications in various industrial and daily-life scenarios. To this end, a deep learning-based odor compass is designed in this work. Functionally, the designed odor compass is divided into three primary modules, which are the sensing module (i.e., a sensor array composed of four metal-oxide-semiconductor (MOS) gas sensors), the communication module, and the remote data processing module (i.e., a deep learning-based algorithm). In particular, a deep learning-based odor attention (DL-OA) model is proposed to realize an end-to-end odor source direction estimation (OSDE) based on the responses of gas sensor array. Moreover, the proposed DL-OA model adopts a separated spatial-temporal attention-based encoder-decoder structure. Furthermore, the average validation error in estimating the OSD in an indoor environment is 4.98°, essentially demonstrating the effectiveness of designed odor compass.
doi_str_mv 10.1109/TIM.2023.3238053
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2774319085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10026674</ieee_id><sourcerecordid>2774319085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-ff1242e54502c5185bddd3633fe7b031b49afdc83aede4c89ab3979ff0ac29253</originalsourceid><addsrcrecordid>eNpNkDtPwzAUhS0EEqGwMzBEYmJIuH7HYymvSkVdymw58TVqRZNgtwP_nkTpwHLP8p1zpY-QWwolpWAeN8uPkgHjJWe8AsnPSEal1IVRip2TDIBWhRFSXZKrlHYAoJXQGXmY58-Ifb5CF9tt-1U8uYQ-X7a-62K-9sNZdPvepXRNLoL7Tnhzyhn5fH3ZLN6L1fptuZivioZqeShCoEwwlEICayStZO2954rzgLoGTmthXPBNxR16FE1lXM2NNiGAa5hhks_I_bTbx-7niOlgd90xtsNLy7QWnBqoRgomqoldShGD7eN27-KvpWBHIXYQYkch9iRkqNxNlS0i_sOBKTXs_gECUloJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774319085</pqid></control><display><type>article</type><title>A Deep Learning-Based Indoor Odor Compass</title><source>IEEE Electronic Library (IEL)</source><creator>Yan, Zheng ; Meng, Qing-Hao ; Jing, Tao ; Chen, Si-Wen ; Hou, Hui-Rang</creator><creatorcontrib>Yan, Zheng ; Meng, Qing-Hao ; Jing, Tao ; Chen, Si-Wen ; Hou, Hui-Rang</creatorcontrib><description>Mobile robot-based odor source localization (OSL) has broad applications in various industrial and daily-life scenarios. To this end, a deep learning-based odor compass is designed in this work. Functionally, the designed odor compass is divided into three primary modules, which are the sensing module (i.e., a sensor array composed of four metal-oxide-semiconductor (MOS) gas sensors), the communication module, and the remote data processing module (i.e., a deep learning-based algorithm). In particular, a deep learning-based odor attention (DL-OA) model is proposed to realize an end-to-end odor source direction estimation (OSDE) based on the responses of gas sensor array. Moreover, the proposed DL-OA model adopts a separated spatial-temporal attention-based encoder-decoder structure. Furthermore, the average validation error in estimating the OSD in an indoor environment is 4.98°, essentially demonstrating the effectiveness of designed odor compass.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2023.3238053</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Coders ; Compass ; Data processing ; Deep learning ; Encoders-Decoders ; Estimation ; Gas detectors ; Gas sensors ; Indoor environments ; Layout ; Machine learning ; Metal oxide semiconductors ; Modules ; odor compass ; odor source localization (OSL) ; Remote sensors ; Robot sensing systems ; Sensor arrays ; signal processing ; Wireless communication ; Wireless sensor networks</subject><ispartof>IEEE transactions on instrumentation and measurement, 2023, Vol.72, p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-ff1242e54502c5185bddd3633fe7b031b49afdc83aede4c89ab3979ff0ac29253</cites><orcidid>0000-0002-4608-273X ; 0000-0003-0806-6808 ; 0000-0002-9915-7088 ; 0000-0001-7003-8352 ; 0000-0001-7545-4283</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10026674$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10026674$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yan, Zheng</creatorcontrib><creatorcontrib>Meng, Qing-Hao</creatorcontrib><creatorcontrib>Jing, Tao</creatorcontrib><creatorcontrib>Chen, Si-Wen</creatorcontrib><creatorcontrib>Hou, Hui-Rang</creatorcontrib><title>A Deep Learning-Based Indoor Odor Compass</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Mobile robot-based odor source localization (OSL) has broad applications in various industrial and daily-life scenarios. To this end, a deep learning-based odor compass is designed in this work. Functionally, the designed odor compass is divided into three primary modules, which are the sensing module (i.e., a sensor array composed of four metal-oxide-semiconductor (MOS) gas sensors), the communication module, and the remote data processing module (i.e., a deep learning-based algorithm). In particular, a deep learning-based odor attention (DL-OA) model is proposed to realize an end-to-end odor source direction estimation (OSDE) based on the responses of gas sensor array. Moreover, the proposed DL-OA model adopts a separated spatial-temporal attention-based encoder-decoder structure. Furthermore, the average validation error in estimating the OSD in an indoor environment is 4.98°, essentially demonstrating the effectiveness of designed odor compass.</description><subject>Algorithms</subject><subject>Coders</subject><subject>Compass</subject><subject>Data processing</subject><subject>Deep learning</subject><subject>Encoders-Decoders</subject><subject>Estimation</subject><subject>Gas detectors</subject><subject>Gas sensors</subject><subject>Indoor environments</subject><subject>Layout</subject><subject>Machine learning</subject><subject>Metal oxide semiconductors</subject><subject>Modules</subject><subject>odor compass</subject><subject>odor source localization (OSL)</subject><subject>Remote sensors</subject><subject>Robot sensing systems</subject><subject>Sensor arrays</subject><subject>signal processing</subject><subject>Wireless communication</subject><subject>Wireless sensor networks</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkDtPwzAUhS0EEqGwMzBEYmJIuH7HYymvSkVdymw58TVqRZNgtwP_nkTpwHLP8p1zpY-QWwolpWAeN8uPkgHjJWe8AsnPSEal1IVRip2TDIBWhRFSXZKrlHYAoJXQGXmY58-Ifb5CF9tt-1U8uYQ-X7a-62K-9sNZdPvepXRNLoL7Tnhzyhn5fH3ZLN6L1fptuZivioZqeShCoEwwlEICayStZO2954rzgLoGTmthXPBNxR16FE1lXM2NNiGAa5hhks_I_bTbx-7niOlgd90xtsNLy7QWnBqoRgomqoldShGD7eN27-KvpWBHIXYQYkch9iRkqNxNlS0i_sOBKTXs_gECUloJ</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Yan, Zheng</creator><creator>Meng, Qing-Hao</creator><creator>Jing, Tao</creator><creator>Chen, Si-Wen</creator><creator>Hou, Hui-Rang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4608-273X</orcidid><orcidid>https://orcid.org/0000-0003-0806-6808</orcidid><orcidid>https://orcid.org/0000-0002-9915-7088</orcidid><orcidid>https://orcid.org/0000-0001-7003-8352</orcidid><orcidid>https://orcid.org/0000-0001-7545-4283</orcidid></search><sort><creationdate>2023</creationdate><title>A Deep Learning-Based Indoor Odor Compass</title><author>Yan, Zheng ; Meng, Qing-Hao ; Jing, Tao ; Chen, Si-Wen ; Hou, Hui-Rang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-ff1242e54502c5185bddd3633fe7b031b49afdc83aede4c89ab3979ff0ac29253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Coders</topic><topic>Compass</topic><topic>Data processing</topic><topic>Deep learning</topic><topic>Encoders-Decoders</topic><topic>Estimation</topic><topic>Gas detectors</topic><topic>Gas sensors</topic><topic>Indoor environments</topic><topic>Layout</topic><topic>Machine learning</topic><topic>Metal oxide semiconductors</topic><topic>Modules</topic><topic>odor compass</topic><topic>odor source localization (OSL)</topic><topic>Remote sensors</topic><topic>Robot sensing systems</topic><topic>Sensor arrays</topic><topic>signal processing</topic><topic>Wireless communication</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Zheng</creatorcontrib><creatorcontrib>Meng, Qing-Hao</creatorcontrib><creatorcontrib>Jing, Tao</creatorcontrib><creatorcontrib>Chen, Si-Wen</creatorcontrib><creatorcontrib>Hou, Hui-Rang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yan, Zheng</au><au>Meng, Qing-Hao</au><au>Jing, Tao</au><au>Chen, Si-Wen</au><au>Hou, Hui-Rang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Deep Learning-Based Indoor Odor Compass</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2023</date><risdate>2023</risdate><volume>72</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Mobile robot-based odor source localization (OSL) has broad applications in various industrial and daily-life scenarios. To this end, a deep learning-based odor compass is designed in this work. Functionally, the designed odor compass is divided into three primary modules, which are the sensing module (i.e., a sensor array composed of four metal-oxide-semiconductor (MOS) gas sensors), the communication module, and the remote data processing module (i.e., a deep learning-based algorithm). In particular, a deep learning-based odor attention (DL-OA) model is proposed to realize an end-to-end odor source direction estimation (OSDE) based on the responses of gas sensor array. Moreover, the proposed DL-OA model adopts a separated spatial-temporal attention-based encoder-decoder structure. Furthermore, the average validation error in estimating the OSD in an indoor environment is 4.98°, essentially demonstrating the effectiveness of designed odor compass.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2023.3238053</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4608-273X</orcidid><orcidid>https://orcid.org/0000-0003-0806-6808</orcidid><orcidid>https://orcid.org/0000-0002-9915-7088</orcidid><orcidid>https://orcid.org/0000-0001-7003-8352</orcidid><orcidid>https://orcid.org/0000-0001-7545-4283</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2023, Vol.72, p.1-10
issn 0018-9456
1557-9662
language eng
recordid cdi_proquest_journals_2774319085
source IEEE Electronic Library (IEL)
subjects Algorithms
Coders
Compass
Data processing
Deep learning
Encoders-Decoders
Estimation
Gas detectors
Gas sensors
Indoor environments
Layout
Machine learning
Metal oxide semiconductors
Modules
odor compass
odor source localization (OSL)
Remote sensors
Robot sensing systems
Sensor arrays
signal processing
Wireless communication
Wireless sensor networks
title A Deep Learning-Based Indoor Odor Compass
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A21%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Deep%20Learning-Based%20Indoor%20Odor%20Compass&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Yan,%20Zheng&rft.date=2023&rft.volume=72&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2023.3238053&rft_dat=%3Cproquest_RIE%3E2774319085%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774319085&rft_id=info:pmid/&rft_ieee_id=10026674&rfr_iscdi=true