Explicit time integration scheme with large time steps for first order transient problems using finite increment calculus

We present an explicit integration scheme for solving the transient heat conduction equation that allows larger time steps than the standard forward Euler scheme. The derivation starts from a higher order form of the governing differential equations of the problem obtained using a Finite Increment C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2022-12, Vol.402, p.115332, Article 115332
Hauptverfasser: Oñate, Eugenio, de Pouplana, Ignasi, Zárate, Francisco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 115332
container_title Computer methods in applied mechanics and engineering
container_volume 402
creator Oñate, Eugenio
de Pouplana, Ignasi
Zárate, Francisco
description We present an explicit integration scheme for solving the transient heat conduction equation that allows larger time steps than the standard forward Euler scheme. The derivation starts from a higher order form of the governing differential equations of the problem obtained using a Finite Increment Calculus (FIC) procedure. The efficiency of the new explicit integration scheme in terms of substantial gains in the time step size versus the forward Euler scheme is verified in the solution of transient heat conduction problems in one and two dimensions. The method is readily extendible to other problems in mechanics governed by the first order transient differential equation.
doi_str_mv 10.1016/j.cma.2022.115332
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2774244718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004578252200425X</els_id><sourcerecordid>2774244718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-15375913328fcc8bb44b89b008ddb10ce40009eb2b76e68af3595022df2b32803</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwA7hZ4pxiO0njiBOqykOqxAXOlu1sWkd5YTtA_z1bhTO-WLJndmc-Qm45W3HG1_fNynZ6JZgQK87zNBVnZMFlUSaCp_KcLBjL8qSQIr8kVyE0DI_kYkGO25-xddZFGl0H1PUR9l5HN_Q02APg07eLB9pqv4dZEiKMgdaDp7XzIdLBV-Bp9LoPDvpIRz-YFrpAp-D6PYp6F0-Drcdp-G91a6d2CtfkotZtgJu_e0k-nrbvm5dk9_b8unncJVbkeUywTJGXHBvJ2lppTJYZWRqMX1WGMwsZVinBCFOsYS11neZljhiqWhj0sHRJ7ua5GOxzghBVM0y-x5VKFEUmsqzgElV8Vlk_hOChVqN3nfZHxZk6EVaNQsLqRFjNhNHzMHsA43858CpYRGChch5sVNXg_nH_Akd9hSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774244718</pqid></control><display><type>article</type><title>Explicit time integration scheme with large time steps for first order transient problems using finite increment calculus</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Oñate, Eugenio ; de Pouplana, Ignasi ; Zárate, Francisco</creator><creatorcontrib>Oñate, Eugenio ; de Pouplana, Ignasi ; Zárate, Francisco</creatorcontrib><description>We present an explicit integration scheme for solving the transient heat conduction equation that allows larger time steps than the standard forward Euler scheme. The derivation starts from a higher order form of the governing differential equations of the problem obtained using a Finite Increment Calculus (FIC) procedure. The efficiency of the new explicit integration scheme in terms of substantial gains in the time step size versus the forward Euler scheme is verified in the solution of transient heat conduction problems in one and two dimensions. The method is readily extendible to other problems in mechanics governed by the first order transient differential equation.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2022.115332</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Conduction heating ; Conductive heat transfer ; Differential calculus ; Differential equations ; Explicit scheme ; Finite increment calculus ; First order equation ; Heat conduction ; Large time steps ; Time integration ; Transient heat conduction</subject><ispartof>Computer methods in applied mechanics and engineering, 2022-12, Vol.402, p.115332, Article 115332</ispartof><rights>2022</rights><rights>Copyright Elsevier BV Dec 1, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c255t-15375913328fcc8bb44b89b008ddb10ce40009eb2b76e68af3595022df2b32803</citedby><cites>FETCH-LOGICAL-c255t-15375913328fcc8bb44b89b008ddb10ce40009eb2b76e68af3595022df2b32803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S004578252200425X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Oñate, Eugenio</creatorcontrib><creatorcontrib>de Pouplana, Ignasi</creatorcontrib><creatorcontrib>Zárate, Francisco</creatorcontrib><title>Explicit time integration scheme with large time steps for first order transient problems using finite increment calculus</title><title>Computer methods in applied mechanics and engineering</title><description>We present an explicit integration scheme for solving the transient heat conduction equation that allows larger time steps than the standard forward Euler scheme. The derivation starts from a higher order form of the governing differential equations of the problem obtained using a Finite Increment Calculus (FIC) procedure. The efficiency of the new explicit integration scheme in terms of substantial gains in the time step size versus the forward Euler scheme is verified in the solution of transient heat conduction problems in one and two dimensions. The method is readily extendible to other problems in mechanics governed by the first order transient differential equation.</description><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>Differential calculus</subject><subject>Differential equations</subject><subject>Explicit scheme</subject><subject>Finite increment calculus</subject><subject>First order equation</subject><subject>Heat conduction</subject><subject>Large time steps</subject><subject>Time integration</subject><subject>Transient heat conduction</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwA7hZ4pxiO0njiBOqykOqxAXOlu1sWkd5YTtA_z1bhTO-WLJndmc-Qm45W3HG1_fNynZ6JZgQK87zNBVnZMFlUSaCp_KcLBjL8qSQIr8kVyE0DI_kYkGO25-xddZFGl0H1PUR9l5HN_Q02APg07eLB9pqv4dZEiKMgdaDp7XzIdLBV-Bp9LoPDvpIRz-YFrpAp-D6PYp6F0-Drcdp-G91a6d2CtfkotZtgJu_e0k-nrbvm5dk9_b8unncJVbkeUywTJGXHBvJ2lppTJYZWRqMX1WGMwsZVinBCFOsYS11neZljhiqWhj0sHRJ7ua5GOxzghBVM0y-x5VKFEUmsqzgElV8Vlk_hOChVqN3nfZHxZk6EVaNQsLqRFjNhNHzMHsA43858CpYRGChch5sVNXg_nH_Akd9hSQ</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Oñate, Eugenio</creator><creator>de Pouplana, Ignasi</creator><creator>Zárate, Francisco</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20221201</creationdate><title>Explicit time integration scheme with large time steps for first order transient problems using finite increment calculus</title><author>Oñate, Eugenio ; de Pouplana, Ignasi ; Zárate, Francisco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-15375913328fcc8bb44b89b008ddb10ce40009eb2b76e68af3595022df2b32803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>Differential calculus</topic><topic>Differential equations</topic><topic>Explicit scheme</topic><topic>Finite increment calculus</topic><topic>First order equation</topic><topic>Heat conduction</topic><topic>Large time steps</topic><topic>Time integration</topic><topic>Transient heat conduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oñate, Eugenio</creatorcontrib><creatorcontrib>de Pouplana, Ignasi</creatorcontrib><creatorcontrib>Zárate, Francisco</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oñate, Eugenio</au><au>de Pouplana, Ignasi</au><au>Zárate, Francisco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Explicit time integration scheme with large time steps for first order transient problems using finite increment calculus</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>402</volume><spage>115332</spage><pages>115332-</pages><artnum>115332</artnum><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>We present an explicit integration scheme for solving the transient heat conduction equation that allows larger time steps than the standard forward Euler scheme. The derivation starts from a higher order form of the governing differential equations of the problem obtained using a Finite Increment Calculus (FIC) procedure. The efficiency of the new explicit integration scheme in terms of substantial gains in the time step size versus the forward Euler scheme is verified in the solution of transient heat conduction problems in one and two dimensions. The method is readily extendible to other problems in mechanics governed by the first order transient differential equation.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2022.115332</doi></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2022-12, Vol.402, p.115332, Article 115332
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_journals_2774244718
source Elsevier ScienceDirect Journals Complete
subjects Conduction heating
Conductive heat transfer
Differential calculus
Differential equations
Explicit scheme
Finite increment calculus
First order equation
Heat conduction
Large time steps
Time integration
Transient heat conduction
title Explicit time integration scheme with large time steps for first order transient problems using finite increment calculus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T18%3A40%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Explicit%20time%20integration%20scheme%20with%20large%20time%20steps%20for%20first%20order%20transient%20problems%20using%20finite%20increment%20calculus&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=O%C3%B1ate,%20Eugenio&rft.date=2022-12-01&rft.volume=402&rft.spage=115332&rft.pages=115332-&rft.artnum=115332&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2022.115332&rft_dat=%3Cproquest_cross%3E2774244718%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774244718&rft_id=info:pmid/&rft_els_id=S004578252200425X&rfr_iscdi=true