Phase stability, mechanical properties and thermal conductivity of technetium diborides in different crystal structures

The possible structures of technetium diboride under ambient conditions are predicted by the structure prediction algorithm CALYPSO with density functional theory calculations, and their phase stability, mechanical properties and thermal conductivity are further investigated. The results showed that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2023-03, Vol.129 (3), Article 175
Hauptverfasser: Wu, H., Wang, Yi X., Yan, Zheng X., Liu, W., Wang, Zhao Q., Gu, Jian B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Applied physics. A, Materials science & processing
container_volume 129
creator Wu, H.
Wang, Yi X.
Yan, Zheng X.
Liu, W.
Wang, Zhao Q.
Gu, Jian B.
description The possible structures of technetium diboride under ambient conditions are predicted by the structure prediction algorithm CALYPSO with density functional theory calculations, and their phase stability, mechanical properties and thermal conductivity are further investigated. The results showed that P 6 3 / mmc ( hP 6-TcB 2 ), P 6/ mmm ( hP 3-TcB 2 ), Pmmn ( oP 6-TcB 2 ), R 3 ¯ m ( hR 9-TcB 2 ), Cmcm ( oC 12-TcB 2 ) are all mechanically and dynamically stable. Moreover, the Vickers hardness of the five structures is evaluated by empirical model. In which, hP 6-TcB 2 has the highest hardness (38.4 GPa), and hP 6-TcB 2 , oP 6-TcB 2 , and hR 9-TcB 2 are both the potential hard materials. In addition, the elastic-dependent anisotropy properties of these structures are further characterized by three-dimensional graphical representations. The anisotropic order of bulk modulus B is hR 9 >  hP 6 >  oP 6 >  hP 3 >  oC 12, while the anisotropy ranking of Young’s modulus E and shear modulus G should be hP 3 >  oP 6 >  hP 6 >  hR 9 >  oC 12. Finally, the minimum thermal conductivity of TcB 2 in different structures are further investigated by using Clarke’s and Cahill’s models. The results showed that these technetium diborides may also be potential high-temperature thermal barrier coating materials.
doi_str_mv 10.1007/s00339-023-06465-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2774230768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2774230768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4b5f204ab88bf2ab0b6f0fa9c02b848d8ea7735180ffbc53a31a85310409e55e3</originalsourceid><addsrcrecordid>eNp9kMtKBDEQRYMoOI7-gKuAW1srj-5OL2XwBQO60HVI0omToR9jklbm74224M7aFFXcU5e6CJ0TuCIA9XUEYKwpgLICKl6VRXOAFoQzmkcGh2gBDa8LwZrqGJ3EuIVcnNIF-nzeqGhxTEr7zqf9Je6t2ajBG9XhXRh3NiRvI1ZDi9PGhj6vzTi0k0n-I-vx6HDKxGCTn3rcej0G32bAD3lwzgY7JGzCPjt02SZkcAo2nqIjp7poz377Er3e3b6sHor10_3j6mZdGEaaVHBdOgpcaSG0o0qDrhw41RigWnDRCqvqmpVEgHPalEwxokTJCHBobFlatkQX8938y_tkY5LbcQpDtpS0rjllUFciq-isMmGMMVgnd8H3KuwlAfkdsJwDljlg-ROwbDLEZihm8fBmw9_pf6gvmwGBGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774230768</pqid></control><display><type>article</type><title>Phase stability, mechanical properties and thermal conductivity of technetium diborides in different crystal structures</title><source>Springer Online Journals Complete</source><creator>Wu, H. ; Wang, Yi X. ; Yan, Zheng X. ; Liu, W. ; Wang, Zhao Q. ; Gu, Jian B.</creator><creatorcontrib>Wu, H. ; Wang, Yi X. ; Yan, Zheng X. ; Liu, W. ; Wang, Zhao Q. ; Gu, Jian B.</creatorcontrib><description>The possible structures of technetium diboride under ambient conditions are predicted by the structure prediction algorithm CALYPSO with density functional theory calculations, and their phase stability, mechanical properties and thermal conductivity are further investigated. The results showed that P 6 3 / mmc ( hP 6-TcB 2 ), P 6/ mmm ( hP 3-TcB 2 ), Pmmn ( oP 6-TcB 2 ), R 3 ¯ m ( hR 9-TcB 2 ), Cmcm ( oC 12-TcB 2 ) are all mechanically and dynamically stable. Moreover, the Vickers hardness of the five structures is evaluated by empirical model. In which, hP 6-TcB 2 has the highest hardness (38.4 GPa), and hP 6-TcB 2 , oP 6-TcB 2 , and hR 9-TcB 2 are both the potential hard materials. In addition, the elastic-dependent anisotropy properties of these structures are further characterized by three-dimensional graphical representations. The anisotropic order of bulk modulus B is hR 9 &gt;  hP 6 &gt;  oP 6 &gt;  hP 3 &gt;  oC 12, while the anisotropy ranking of Young’s modulus E and shear modulus G should be hP 3 &gt;  oP 6 &gt;  hP 6 &gt;  hR 9 &gt;  oC 12. Finally, the minimum thermal conductivity of TcB 2 in different structures are further investigated by using Clarke’s and Cahill’s models. The results showed that these technetium diborides may also be potential high-temperature thermal barrier coating materials.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-023-06465-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Applied physics ; Bulk modulus ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Density functional theory ; Diamond pyramid hardness ; Elastic anisotropy ; Elastic properties ; Graphical representations ; Hard materials ; Heat conductivity ; Heat transfer ; High temperature ; Machines ; Manufacturing ; Materials science ; Mechanical properties ; Modulus of elasticity ; Nanotechnology ; Optical and Electronic Materials ; Phase stability ; Physics ; Physics and Astronomy ; Predictions ; Processes ; Shear modulus ; Surfaces and Interfaces ; Technetium ; Thermal barrier coatings ; Thermal conductivity ; Thin Films</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2023-03, Vol.129 (3), Article 175</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4b5f204ab88bf2ab0b6f0fa9c02b848d8ea7735180ffbc53a31a85310409e55e3</citedby><cites>FETCH-LOGICAL-c319t-4b5f204ab88bf2ab0b6f0fa9c02b848d8ea7735180ffbc53a31a85310409e55e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-023-06465-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-023-06465-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wu, H.</creatorcontrib><creatorcontrib>Wang, Yi X.</creatorcontrib><creatorcontrib>Yan, Zheng X.</creatorcontrib><creatorcontrib>Liu, W.</creatorcontrib><creatorcontrib>Wang, Zhao Q.</creatorcontrib><creatorcontrib>Gu, Jian B.</creatorcontrib><title>Phase stability, mechanical properties and thermal conductivity of technetium diborides in different crystal structures</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>The possible structures of technetium diboride under ambient conditions are predicted by the structure prediction algorithm CALYPSO with density functional theory calculations, and their phase stability, mechanical properties and thermal conductivity are further investigated. The results showed that P 6 3 / mmc ( hP 6-TcB 2 ), P 6/ mmm ( hP 3-TcB 2 ), Pmmn ( oP 6-TcB 2 ), R 3 ¯ m ( hR 9-TcB 2 ), Cmcm ( oC 12-TcB 2 ) are all mechanically and dynamically stable. Moreover, the Vickers hardness of the five structures is evaluated by empirical model. In which, hP 6-TcB 2 has the highest hardness (38.4 GPa), and hP 6-TcB 2 , oP 6-TcB 2 , and hR 9-TcB 2 are both the potential hard materials. In addition, the elastic-dependent anisotropy properties of these structures are further characterized by three-dimensional graphical representations. The anisotropic order of bulk modulus B is hR 9 &gt;  hP 6 &gt;  oP 6 &gt;  hP 3 &gt;  oC 12, while the anisotropy ranking of Young’s modulus E and shear modulus G should be hP 3 &gt;  oP 6 &gt;  hP 6 &gt;  hR 9 &gt;  oC 12. Finally, the minimum thermal conductivity of TcB 2 in different structures are further investigated by using Clarke’s and Cahill’s models. The results showed that these technetium diborides may also be potential high-temperature thermal barrier coating materials.</description><subject>Algorithms</subject><subject>Applied physics</subject><subject>Bulk modulus</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Density functional theory</subject><subject>Diamond pyramid hardness</subject><subject>Elastic anisotropy</subject><subject>Elastic properties</subject><subject>Graphical representations</subject><subject>Hard materials</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>High temperature</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Phase stability</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Predictions</subject><subject>Processes</subject><subject>Shear modulus</subject><subject>Surfaces and Interfaces</subject><subject>Technetium</subject><subject>Thermal barrier coatings</subject><subject>Thermal conductivity</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKBDEQRYMoOI7-gKuAW1srj-5OL2XwBQO60HVI0omToR9jklbm74224M7aFFXcU5e6CJ0TuCIA9XUEYKwpgLICKl6VRXOAFoQzmkcGh2gBDa8LwZrqGJ3EuIVcnNIF-nzeqGhxTEr7zqf9Je6t2ajBG9XhXRh3NiRvI1ZDi9PGhj6vzTi0k0n-I-vx6HDKxGCTn3rcej0G32bAD3lwzgY7JGzCPjt02SZkcAo2nqIjp7poz377Er3e3b6sHor10_3j6mZdGEaaVHBdOgpcaSG0o0qDrhw41RigWnDRCqvqmpVEgHPalEwxokTJCHBobFlatkQX8938y_tkY5LbcQpDtpS0rjllUFciq-isMmGMMVgnd8H3KuwlAfkdsJwDljlg-ROwbDLEZihm8fBmw9_pf6gvmwGBGg</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Wu, H.</creator><creator>Wang, Yi X.</creator><creator>Yan, Zheng X.</creator><creator>Liu, W.</creator><creator>Wang, Zhao Q.</creator><creator>Gu, Jian B.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230301</creationdate><title>Phase stability, mechanical properties and thermal conductivity of technetium diborides in different crystal structures</title><author>Wu, H. ; Wang, Yi X. ; Yan, Zheng X. ; Liu, W. ; Wang, Zhao Q. ; Gu, Jian B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4b5f204ab88bf2ab0b6f0fa9c02b848d8ea7735180ffbc53a31a85310409e55e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Applied physics</topic><topic>Bulk modulus</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Density functional theory</topic><topic>Diamond pyramid hardness</topic><topic>Elastic anisotropy</topic><topic>Elastic properties</topic><topic>Graphical representations</topic><topic>Hard materials</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>High temperature</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Phase stability</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Predictions</topic><topic>Processes</topic><topic>Shear modulus</topic><topic>Surfaces and Interfaces</topic><topic>Technetium</topic><topic>Thermal barrier coatings</topic><topic>Thermal conductivity</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, H.</creatorcontrib><creatorcontrib>Wang, Yi X.</creatorcontrib><creatorcontrib>Yan, Zheng X.</creatorcontrib><creatorcontrib>Liu, W.</creatorcontrib><creatorcontrib>Wang, Zhao Q.</creatorcontrib><creatorcontrib>Gu, Jian B.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, H.</au><au>Wang, Yi X.</au><au>Yan, Zheng X.</au><au>Liu, W.</au><au>Wang, Zhao Q.</au><au>Gu, Jian B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase stability, mechanical properties and thermal conductivity of technetium diborides in different crystal structures</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>129</volume><issue>3</issue><artnum>175</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>The possible structures of technetium diboride under ambient conditions are predicted by the structure prediction algorithm CALYPSO with density functional theory calculations, and their phase stability, mechanical properties and thermal conductivity are further investigated. The results showed that P 6 3 / mmc ( hP 6-TcB 2 ), P 6/ mmm ( hP 3-TcB 2 ), Pmmn ( oP 6-TcB 2 ), R 3 ¯ m ( hR 9-TcB 2 ), Cmcm ( oC 12-TcB 2 ) are all mechanically and dynamically stable. Moreover, the Vickers hardness of the five structures is evaluated by empirical model. In which, hP 6-TcB 2 has the highest hardness (38.4 GPa), and hP 6-TcB 2 , oP 6-TcB 2 , and hR 9-TcB 2 are both the potential hard materials. In addition, the elastic-dependent anisotropy properties of these structures are further characterized by three-dimensional graphical representations. The anisotropic order of bulk modulus B is hR 9 &gt;  hP 6 &gt;  oP 6 &gt;  hP 3 &gt;  oC 12, while the anisotropy ranking of Young’s modulus E and shear modulus G should be hP 3 &gt;  oP 6 &gt;  hP 6 &gt;  hR 9 &gt;  oC 12. Finally, the minimum thermal conductivity of TcB 2 in different structures are further investigated by using Clarke’s and Cahill’s models. The results showed that these technetium diborides may also be potential high-temperature thermal barrier coating materials.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-023-06465-9</doi></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2023-03, Vol.129 (3), Article 175
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_journals_2774230768
source Springer Online Journals Complete
subjects Algorithms
Applied physics
Bulk modulus
Characterization and Evaluation of Materials
Condensed Matter Physics
Density functional theory
Diamond pyramid hardness
Elastic anisotropy
Elastic properties
Graphical representations
Hard materials
Heat conductivity
Heat transfer
High temperature
Machines
Manufacturing
Materials science
Mechanical properties
Modulus of elasticity
Nanotechnology
Optical and Electronic Materials
Phase stability
Physics
Physics and Astronomy
Predictions
Processes
Shear modulus
Surfaces and Interfaces
Technetium
Thermal barrier coatings
Thermal conductivity
Thin Films
title Phase stability, mechanical properties and thermal conductivity of technetium diborides in different crystal structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T21%3A50%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20stability,%20mechanical%20properties%20and%20thermal%20conductivity%20of%20technetium%20diborides%20in%20different%20crystal%20structures&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Wu,%20H.&rft.date=2023-03-01&rft.volume=129&rft.issue=3&rft.artnum=175&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-023-06465-9&rft_dat=%3Cproquest_cross%3E2774230768%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774230768&rft_id=info:pmid/&rfr_iscdi=true