Phase stability, mechanical properties and thermal conductivity of technetium diborides in different crystal structures
The possible structures of technetium diboride under ambient conditions are predicted by the structure prediction algorithm CALYPSO with density functional theory calculations, and their phase stability, mechanical properties and thermal conductivity are further investigated. The results showed that...
Gespeichert in:
Veröffentlicht in: | Applied physics. A, Materials science & processing Materials science & processing, 2023-03, Vol.129 (3), Article 175 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Applied physics. A, Materials science & processing |
container_volume | 129 |
creator | Wu, H. Wang, Yi X. Yan, Zheng X. Liu, W. Wang, Zhao Q. Gu, Jian B. |
description | The possible structures of technetium diboride under ambient conditions are predicted by the structure prediction algorithm CALYPSO with density functional theory calculations, and their phase stability, mechanical properties and thermal conductivity are further investigated. The results showed that
P
6
3
/
mmc
(
hP
6-TcB
2
),
P
6/
mmm
(
hP
3-TcB
2
),
Pmmn
(
oP
6-TcB
2
),
R
3
¯
m
(
hR
9-TcB
2
),
Cmcm
(
oC
12-TcB
2
) are all mechanically and dynamically stable. Moreover, the Vickers hardness of the five structures is evaluated by empirical model. In which,
hP
6-TcB
2
has the highest hardness (38.4 GPa), and
hP
6-TcB
2
,
oP
6-TcB
2
, and
hR
9-TcB
2
are both the potential hard materials. In addition, the elastic-dependent anisotropy properties of these structures are further characterized by three-dimensional graphical representations. The anisotropic order of bulk modulus
B
is
hR
9 >
hP
6 >
oP
6 >
hP
3 >
oC
12, while the anisotropy ranking of Young’s modulus
E
and shear modulus
G
should be
hP
3 >
oP
6 >
hP
6 >
hR
9 >
oC
12. Finally, the minimum thermal conductivity of TcB
2
in different structures are further investigated by using Clarke’s and Cahill’s models. The results showed that these technetium diborides may also be potential high-temperature thermal barrier coating materials. |
doi_str_mv | 10.1007/s00339-023-06465-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2774230768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2774230768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4b5f204ab88bf2ab0b6f0fa9c02b848d8ea7735180ffbc53a31a85310409e55e3</originalsourceid><addsrcrecordid>eNp9kMtKBDEQRYMoOI7-gKuAW1srj-5OL2XwBQO60HVI0omToR9jklbm74224M7aFFXcU5e6CJ0TuCIA9XUEYKwpgLICKl6VRXOAFoQzmkcGh2gBDa8LwZrqGJ3EuIVcnNIF-nzeqGhxTEr7zqf9Je6t2ajBG9XhXRh3NiRvI1ZDi9PGhj6vzTi0k0n-I-vx6HDKxGCTn3rcej0G32bAD3lwzgY7JGzCPjt02SZkcAo2nqIjp7poz377Er3e3b6sHor10_3j6mZdGEaaVHBdOgpcaSG0o0qDrhw41RigWnDRCqvqmpVEgHPalEwxokTJCHBobFlatkQX8938y_tkY5LbcQpDtpS0rjllUFciq-isMmGMMVgnd8H3KuwlAfkdsJwDljlg-ROwbDLEZihm8fBmw9_pf6gvmwGBGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774230768</pqid></control><display><type>article</type><title>Phase stability, mechanical properties and thermal conductivity of technetium diborides in different crystal structures</title><source>Springer Online Journals Complete</source><creator>Wu, H. ; Wang, Yi X. ; Yan, Zheng X. ; Liu, W. ; Wang, Zhao Q. ; Gu, Jian B.</creator><creatorcontrib>Wu, H. ; Wang, Yi X. ; Yan, Zheng X. ; Liu, W. ; Wang, Zhao Q. ; Gu, Jian B.</creatorcontrib><description>The possible structures of technetium diboride under ambient conditions are predicted by the structure prediction algorithm CALYPSO with density functional theory calculations, and their phase stability, mechanical properties and thermal conductivity are further investigated. The results showed that
P
6
3
/
mmc
(
hP
6-TcB
2
),
P
6/
mmm
(
hP
3-TcB
2
),
Pmmn
(
oP
6-TcB
2
),
R
3
¯
m
(
hR
9-TcB
2
),
Cmcm
(
oC
12-TcB
2
) are all mechanically and dynamically stable. Moreover, the Vickers hardness of the five structures is evaluated by empirical model. In which,
hP
6-TcB
2
has the highest hardness (38.4 GPa), and
hP
6-TcB
2
,
oP
6-TcB
2
, and
hR
9-TcB
2
are both the potential hard materials. In addition, the elastic-dependent anisotropy properties of these structures are further characterized by three-dimensional graphical representations. The anisotropic order of bulk modulus
B
is
hR
9 >
hP
6 >
oP
6 >
hP
3 >
oC
12, while the anisotropy ranking of Young’s modulus
E
and shear modulus
G
should be
hP
3 >
oP
6 >
hP
6 >
hR
9 >
oC
12. Finally, the minimum thermal conductivity of TcB
2
in different structures are further investigated by using Clarke’s and Cahill’s models. The results showed that these technetium diborides may also be potential high-temperature thermal barrier coating materials.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-023-06465-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Applied physics ; Bulk modulus ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Density functional theory ; Diamond pyramid hardness ; Elastic anisotropy ; Elastic properties ; Graphical representations ; Hard materials ; Heat conductivity ; Heat transfer ; High temperature ; Machines ; Manufacturing ; Materials science ; Mechanical properties ; Modulus of elasticity ; Nanotechnology ; Optical and Electronic Materials ; Phase stability ; Physics ; Physics and Astronomy ; Predictions ; Processes ; Shear modulus ; Surfaces and Interfaces ; Technetium ; Thermal barrier coatings ; Thermal conductivity ; Thin Films</subject><ispartof>Applied physics. A, Materials science & processing, 2023-03, Vol.129 (3), Article 175</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4b5f204ab88bf2ab0b6f0fa9c02b848d8ea7735180ffbc53a31a85310409e55e3</citedby><cites>FETCH-LOGICAL-c319t-4b5f204ab88bf2ab0b6f0fa9c02b848d8ea7735180ffbc53a31a85310409e55e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-023-06465-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-023-06465-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wu, H.</creatorcontrib><creatorcontrib>Wang, Yi X.</creatorcontrib><creatorcontrib>Yan, Zheng X.</creatorcontrib><creatorcontrib>Liu, W.</creatorcontrib><creatorcontrib>Wang, Zhao Q.</creatorcontrib><creatorcontrib>Gu, Jian B.</creatorcontrib><title>Phase stability, mechanical properties and thermal conductivity of technetium diborides in different crystal structures</title><title>Applied physics. A, Materials science & processing</title><addtitle>Appl. Phys. A</addtitle><description>The possible structures of technetium diboride under ambient conditions are predicted by the structure prediction algorithm CALYPSO with density functional theory calculations, and their phase stability, mechanical properties and thermal conductivity are further investigated. The results showed that
P
6
3
/
mmc
(
hP
6-TcB
2
),
P
6/
mmm
(
hP
3-TcB
2
),
Pmmn
(
oP
6-TcB
2
),
R
3
¯
m
(
hR
9-TcB
2
),
Cmcm
(
oC
12-TcB
2
) are all mechanically and dynamically stable. Moreover, the Vickers hardness of the five structures is evaluated by empirical model. In which,
hP
6-TcB
2
has the highest hardness (38.4 GPa), and
hP
6-TcB
2
,
oP
6-TcB
2
, and
hR
9-TcB
2
are both the potential hard materials. In addition, the elastic-dependent anisotropy properties of these structures are further characterized by three-dimensional graphical representations. The anisotropic order of bulk modulus
B
is
hR
9 >
hP
6 >
oP
6 >
hP
3 >
oC
12, while the anisotropy ranking of Young’s modulus
E
and shear modulus
G
should be
hP
3 >
oP
6 >
hP
6 >
hR
9 >
oC
12. Finally, the minimum thermal conductivity of TcB
2
in different structures are further investigated by using Clarke’s and Cahill’s models. The results showed that these technetium diborides may also be potential high-temperature thermal barrier coating materials.</description><subject>Algorithms</subject><subject>Applied physics</subject><subject>Bulk modulus</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Density functional theory</subject><subject>Diamond pyramid hardness</subject><subject>Elastic anisotropy</subject><subject>Elastic properties</subject><subject>Graphical representations</subject><subject>Hard materials</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>High temperature</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Phase stability</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Predictions</subject><subject>Processes</subject><subject>Shear modulus</subject><subject>Surfaces and Interfaces</subject><subject>Technetium</subject><subject>Thermal barrier coatings</subject><subject>Thermal conductivity</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKBDEQRYMoOI7-gKuAW1srj-5OL2XwBQO60HVI0omToR9jklbm74224M7aFFXcU5e6CJ0TuCIA9XUEYKwpgLICKl6VRXOAFoQzmkcGh2gBDa8LwZrqGJ3EuIVcnNIF-nzeqGhxTEr7zqf9Je6t2ajBG9XhXRh3NiRvI1ZDi9PGhj6vzTi0k0n-I-vx6HDKxGCTn3rcej0G32bAD3lwzgY7JGzCPjt02SZkcAo2nqIjp7poz377Er3e3b6sHor10_3j6mZdGEaaVHBdOgpcaSG0o0qDrhw41RigWnDRCqvqmpVEgHPalEwxokTJCHBobFlatkQX8938y_tkY5LbcQpDtpS0rjllUFciq-isMmGMMVgnd8H3KuwlAfkdsJwDljlg-ROwbDLEZihm8fBmw9_pf6gvmwGBGg</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Wu, H.</creator><creator>Wang, Yi X.</creator><creator>Yan, Zheng X.</creator><creator>Liu, W.</creator><creator>Wang, Zhao Q.</creator><creator>Gu, Jian B.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230301</creationdate><title>Phase stability, mechanical properties and thermal conductivity of technetium diborides in different crystal structures</title><author>Wu, H. ; Wang, Yi X. ; Yan, Zheng X. ; Liu, W. ; Wang, Zhao Q. ; Gu, Jian B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4b5f204ab88bf2ab0b6f0fa9c02b848d8ea7735180ffbc53a31a85310409e55e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Applied physics</topic><topic>Bulk modulus</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Density functional theory</topic><topic>Diamond pyramid hardness</topic><topic>Elastic anisotropy</topic><topic>Elastic properties</topic><topic>Graphical representations</topic><topic>Hard materials</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>High temperature</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Phase stability</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Predictions</topic><topic>Processes</topic><topic>Shear modulus</topic><topic>Surfaces and Interfaces</topic><topic>Technetium</topic><topic>Thermal barrier coatings</topic><topic>Thermal conductivity</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, H.</creatorcontrib><creatorcontrib>Wang, Yi X.</creatorcontrib><creatorcontrib>Yan, Zheng X.</creatorcontrib><creatorcontrib>Liu, W.</creatorcontrib><creatorcontrib>Wang, Zhao Q.</creatorcontrib><creatorcontrib>Gu, Jian B.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science & processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, H.</au><au>Wang, Yi X.</au><au>Yan, Zheng X.</au><au>Liu, W.</au><au>Wang, Zhao Q.</au><au>Gu, Jian B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase stability, mechanical properties and thermal conductivity of technetium diborides in different crystal structures</atitle><jtitle>Applied physics. A, Materials science & processing</jtitle><stitle>Appl. Phys. A</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>129</volume><issue>3</issue><artnum>175</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>The possible structures of technetium diboride under ambient conditions are predicted by the structure prediction algorithm CALYPSO with density functional theory calculations, and their phase stability, mechanical properties and thermal conductivity are further investigated. The results showed that
P
6
3
/
mmc
(
hP
6-TcB
2
),
P
6/
mmm
(
hP
3-TcB
2
),
Pmmn
(
oP
6-TcB
2
),
R
3
¯
m
(
hR
9-TcB
2
),
Cmcm
(
oC
12-TcB
2
) are all mechanically and dynamically stable. Moreover, the Vickers hardness of the five structures is evaluated by empirical model. In which,
hP
6-TcB
2
has the highest hardness (38.4 GPa), and
hP
6-TcB
2
,
oP
6-TcB
2
, and
hR
9-TcB
2
are both the potential hard materials. In addition, the elastic-dependent anisotropy properties of these structures are further characterized by three-dimensional graphical representations. The anisotropic order of bulk modulus
B
is
hR
9 >
hP
6 >
oP
6 >
hP
3 >
oC
12, while the anisotropy ranking of Young’s modulus
E
and shear modulus
G
should be
hP
3 >
oP
6 >
hP
6 >
hR
9 >
oC
12. Finally, the minimum thermal conductivity of TcB
2
in different structures are further investigated by using Clarke’s and Cahill’s models. The results showed that these technetium diborides may also be potential high-temperature thermal barrier coating materials.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-023-06465-9</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-8396 |
ispartof | Applied physics. A, Materials science & processing, 2023-03, Vol.129 (3), Article 175 |
issn | 0947-8396 1432-0630 |
language | eng |
recordid | cdi_proquest_journals_2774230768 |
source | Springer Online Journals Complete |
subjects | Algorithms Applied physics Bulk modulus Characterization and Evaluation of Materials Condensed Matter Physics Density functional theory Diamond pyramid hardness Elastic anisotropy Elastic properties Graphical representations Hard materials Heat conductivity Heat transfer High temperature Machines Manufacturing Materials science Mechanical properties Modulus of elasticity Nanotechnology Optical and Electronic Materials Phase stability Physics Physics and Astronomy Predictions Processes Shear modulus Surfaces and Interfaces Technetium Thermal barrier coatings Thermal conductivity Thin Films |
title | Phase stability, mechanical properties and thermal conductivity of technetium diborides in different crystal structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T21%3A50%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20stability,%20mechanical%20properties%20and%20thermal%20conductivity%20of%20technetium%20diborides%20in%20different%20crystal%20structures&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Wu,%20H.&rft.date=2023-03-01&rft.volume=129&rft.issue=3&rft.artnum=175&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-023-06465-9&rft_dat=%3Cproquest_cross%3E2774230768%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774230768&rft_id=info:pmid/&rfr_iscdi=true |