Enhanced thermoelectric performance of p-type Mg2Sn single crystals via multi-scale defect engineering

Mg2Sn is a promising mid-temperature thermoelectric (TE) material consisting of earth-abundant, low-cost, and non-toxic elements. Currently, the TE performance of p-type Mg2Sn is still poor due to a lower power factor (PF) and a higher lattice thermal conductivity (κlat) than those of n-type Mg2Sn....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-01, Vol.11 (6), p.2652-2660
Hauptverfasser: Huang, Zhicheng, Hayashi, Kei, Saito, Wataru, Pei, Jun, Jing-Feng, Li, Miyazaki, Yuzuru
Format: Artikel
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mg2Sn is a promising mid-temperature thermoelectric (TE) material consisting of earth-abundant, low-cost, and non-toxic elements. Currently, the TE performance of p-type Mg2Sn is still poor due to a lower power factor (PF) and a higher lattice thermal conductivity (κlat) than those of n-type Mg2Sn. To overcome these disadvantages, we synthesized Li-doped Mg2Sn single crystals (SCs) by the melting method. Li-doping successfully changed the conduction of the Mg2Sn SC from an n-type to a p-type. The Li-doped Mg2Sn SCs contain Mg vacancies, dislocation cores, and Sn-rich precipitates. These multi-scale defects in the Li-doped Mg2Sn SCs did not deteriorate carrier mobility and they effectively scattered phonons with a wide range of frequencies. Since grain boundaries did not exist in the Li-doped Mg2Sn SCs, higher carrier mobility and PF were achieved compared with other p-type Mg2Sn polycrystals (PCs) and SCs. Moreover, the κlat of the Li-doped Mg2Sn SC was lower than that of p-type Mg2Sn PCs and SCs. Owing to the enhanced PF and reduced κlat, a maximum dimensionless figure-of-merit zT of ∼0.38 at 700 K was achieved for the p-type Li-doped Mg2Sn SC with a Li content of 2.5%, the highest value for a p-type Mg2Sn ever reported.
ISSN:2050-7488
2050-7496
DOI:10.1039/d2ta08557g