Modulation of double-network hydrogels via seeding calcium carbonate microparticles for the engineering of ultrasensitive wearable sensors
Double-network (DN) hydrogels with high strength and toughness have shown their potential for applications in materials science and biomedical engineering. Biocompatible sodium alginate (SA)/polyacrylamide (PAM) hydrogels are a promising class of DN hydrogels, which are typically cross-linked with c...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-02, Vol.11 (6), p.2996-3007 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3007 |
---|---|
container_issue | 6 |
container_start_page | 2996 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 11 |
creator | Zhang, Xiaohui Geng, Huimin Zhang, Xunhui Liu, Yaqing Hao, Jingcheng Cui, Jiwei |
description | Double-network (DN) hydrogels with high strength and toughness have shown their potential for applications in materials science and biomedical engineering. Biocompatible sodium alginate (SA)/polyacrylamide (PAM) hydrogels are a promising class of DN hydrogels, which are typically cross-linked with calcium ions (Ca
2+
). However, the use of calcium salts typically induces structural inhomogeneity and reduces the mechanical properties of the resultant hydrogels, which limit their application in tissue scaffolds, actuators, and wearable devices. Herein, we fabricate a homogeneous polymer DN hydrogel by pre-seeding calcium carbonate (CaCO
3
) microparticles into SA/PAM hydrogels, followed by the triggered release of Ca
2+
from the microparticles in acidic solution. The acid-triggered cross-linking generates sacrificial ionic bonds capable of dissipating energy, which endows the Ca
2+
/SA/PAM DN hydrogels with high tensile strength (0.85 MPa), stretchability (1850%), and fracture toughness (6.4 MJ m
−3
). These properties can be easily adjusted by controlling the trigger time as well as the concentration of the CaCO
3
microparticles. In addition, the Ca
2+
/SA/PAM DN hydrogel exhibits high strain sensitivity with a gauge factor of ∼8.9, a wide strain detection range (0.03–1800%), and excellent durability (500 cycles at a strain of 50%), which can be used as a strain sensor to monitor human motions with a fast response (∼0.02 s). Furthermore, the Ca
2+
/SA/PAM DN hydrogel as a sensor can monitor the pain signal induced by an
in situ
cascade reaction at a wound site in a diabetic rat model. This study provides a controllable strategy to engineer stretchable and tough DN hydrogels for potential applications in flexible devices. |
doi_str_mv | 10.1039/D2TA07834A |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2774136615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2774136615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-d118ffb6afd59858ae932094cb19ace8a91d371e5070f5a53f069314c4a0a90f3</originalsourceid><addsrcrecordid>eNpFUMtOwzAQtBBIVKUXvsASN6SAHeflY1WeUhGXco42ybp1Se1iO636C3w1ropgL7Nazc5ohpBrzu44E_L-IV1MWVmJbHpGRinLWVJmsjj_26vqkky8X7M4FWOFlCPy_Wa7oYegraFW0c4OTY-JwbC37pOuDp2zS-w93WmgHrHTZklb6Fs9bCK6xhoISDe6dXYLLui2R0-VdTSskKJZaoPojk9RfOiDA4_G66B3SPcIDqIbPZ6s81fkQkHvcfKLY_Lx9LiYvSTz9-fX2XSetGkuQ9JxXinVFKC6XFZ5BShFymTWNlxCixVI3omSY85KpnLIhYpJBc_aDBhIpsSY3Jx0t85-DehDvbaDM9GyTssy46IoeB5ZtydWTOa9Q1Vvnd6AO9Sc1ce66_-6xQ8VVnWD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774136615</pqid></control><display><type>article</type><title>Modulation of double-network hydrogels via seeding calcium carbonate microparticles for the engineering of ultrasensitive wearable sensors</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Zhang, Xiaohui ; Geng, Huimin ; Zhang, Xunhui ; Liu, Yaqing ; Hao, Jingcheng ; Cui, Jiwei</creator><creatorcontrib>Zhang, Xiaohui ; Geng, Huimin ; Zhang, Xunhui ; Liu, Yaqing ; Hao, Jingcheng ; Cui, Jiwei</creatorcontrib><description>Double-network (DN) hydrogels with high strength and toughness have shown their potential for applications in materials science and biomedical engineering. Biocompatible sodium alginate (SA)/polyacrylamide (PAM) hydrogels are a promising class of DN hydrogels, which are typically cross-linked with calcium ions (Ca
2+
). However, the use of calcium salts typically induces structural inhomogeneity and reduces the mechanical properties of the resultant hydrogels, which limit their application in tissue scaffolds, actuators, and wearable devices. Herein, we fabricate a homogeneous polymer DN hydrogel by pre-seeding calcium carbonate (CaCO
3
) microparticles into SA/PAM hydrogels, followed by the triggered release of Ca
2+
from the microparticles in acidic solution. The acid-triggered cross-linking generates sacrificial ionic bonds capable of dissipating energy, which endows the Ca
2+
/SA/PAM DN hydrogels with high tensile strength (0.85 MPa), stretchability (1850%), and fracture toughness (6.4 MJ m
−3
). These properties can be easily adjusted by controlling the trigger time as well as the concentration of the CaCO
3
microparticles. In addition, the Ca
2+
/SA/PAM DN hydrogel exhibits high strain sensitivity with a gauge factor of ∼8.9, a wide strain detection range (0.03–1800%), and excellent durability (500 cycles at a strain of 50%), which can be used as a strain sensor to monitor human motions with a fast response (∼0.02 s). Furthermore, the Ca
2+
/SA/PAM DN hydrogel as a sensor can monitor the pain signal induced by an
in situ
cascade reaction at a wound site in a diabetic rat model. This study provides a controllable strategy to engineer stretchable and tough DN hydrogels for potential applications in flexible devices.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/D2TA07834A</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Actuators ; Alginic acid ; Biocompatibility ; Biomedical engineering ; Biomedical materials ; Calcium carbonate ; Calcium ions ; Cascade chemical reactions ; Controllability ; Crosslinking ; Diabetes mellitus ; Durability ; Energy dissipation ; Fracture toughness ; Hydrogels ; Inhomogeneity ; Materials science ; Mechanical properties ; Microparticles ; Pain ; Polyacrylamide ; Polymers ; Sodium alginate ; Strain gauges ; Stretchability ; Tensile strength ; Wearable technology</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2023-02, Vol.11 (6), p.2996-3007</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-d118ffb6afd59858ae932094cb19ace8a91d371e5070f5a53f069314c4a0a90f3</citedby><cites>FETCH-LOGICAL-c259t-d118ffb6afd59858ae932094cb19ace8a91d371e5070f5a53f069314c4a0a90f3</cites><orcidid>0000-0002-9760-9677 ; 0000-0003-1018-4336 ; 0000-0002-3161-676X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Zhang, Xiaohui</creatorcontrib><creatorcontrib>Geng, Huimin</creatorcontrib><creatorcontrib>Zhang, Xunhui</creatorcontrib><creatorcontrib>Liu, Yaqing</creatorcontrib><creatorcontrib>Hao, Jingcheng</creatorcontrib><creatorcontrib>Cui, Jiwei</creatorcontrib><title>Modulation of double-network hydrogels via seeding calcium carbonate microparticles for the engineering of ultrasensitive wearable sensors</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Double-network (DN) hydrogels with high strength and toughness have shown their potential for applications in materials science and biomedical engineering. Biocompatible sodium alginate (SA)/polyacrylamide (PAM) hydrogels are a promising class of DN hydrogels, which are typically cross-linked with calcium ions (Ca
2+
). However, the use of calcium salts typically induces structural inhomogeneity and reduces the mechanical properties of the resultant hydrogels, which limit their application in tissue scaffolds, actuators, and wearable devices. Herein, we fabricate a homogeneous polymer DN hydrogel by pre-seeding calcium carbonate (CaCO
3
) microparticles into SA/PAM hydrogels, followed by the triggered release of Ca
2+
from the microparticles in acidic solution. The acid-triggered cross-linking generates sacrificial ionic bonds capable of dissipating energy, which endows the Ca
2+
/SA/PAM DN hydrogels with high tensile strength (0.85 MPa), stretchability (1850%), and fracture toughness (6.4 MJ m
−3
). These properties can be easily adjusted by controlling the trigger time as well as the concentration of the CaCO
3
microparticles. In addition, the Ca
2+
/SA/PAM DN hydrogel exhibits high strain sensitivity with a gauge factor of ∼8.9, a wide strain detection range (0.03–1800%), and excellent durability (500 cycles at a strain of 50%), which can be used as a strain sensor to monitor human motions with a fast response (∼0.02 s). Furthermore, the Ca
2+
/SA/PAM DN hydrogel as a sensor can monitor the pain signal induced by an
in situ
cascade reaction at a wound site in a diabetic rat model. This study provides a controllable strategy to engineer stretchable and tough DN hydrogels for potential applications in flexible devices.</description><subject>Actuators</subject><subject>Alginic acid</subject><subject>Biocompatibility</subject><subject>Biomedical engineering</subject><subject>Biomedical materials</subject><subject>Calcium carbonate</subject><subject>Calcium ions</subject><subject>Cascade chemical reactions</subject><subject>Controllability</subject><subject>Crosslinking</subject><subject>Diabetes mellitus</subject><subject>Durability</subject><subject>Energy dissipation</subject><subject>Fracture toughness</subject><subject>Hydrogels</subject><subject>Inhomogeneity</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>Microparticles</subject><subject>Pain</subject><subject>Polyacrylamide</subject><subject>Polymers</subject><subject>Sodium alginate</subject><subject>Strain gauges</subject><subject>Stretchability</subject><subject>Tensile strength</subject><subject>Wearable technology</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFUMtOwzAQtBBIVKUXvsASN6SAHeflY1WeUhGXco42ybp1Se1iO636C3w1ropgL7Nazc5ohpBrzu44E_L-IV1MWVmJbHpGRinLWVJmsjj_26vqkky8X7M4FWOFlCPy_Wa7oYegraFW0c4OTY-JwbC37pOuDp2zS-w93WmgHrHTZklb6Fs9bCK6xhoISDe6dXYLLui2R0-VdTSskKJZaoPojk9RfOiDA4_G66B3SPcIDqIbPZ6s81fkQkHvcfKLY_Lx9LiYvSTz9-fX2XSetGkuQ9JxXinVFKC6XFZ5BShFymTWNlxCixVI3omSY85KpnLIhYpJBc_aDBhIpsSY3Jx0t85-DehDvbaDM9GyTssy46IoeB5ZtydWTOa9Q1Vvnd6AO9Sc1ce66_-6xQ8VVnWD</recordid><startdate>20230208</startdate><enddate>20230208</enddate><creator>Zhang, Xiaohui</creator><creator>Geng, Huimin</creator><creator>Zhang, Xunhui</creator><creator>Liu, Yaqing</creator><creator>Hao, Jingcheng</creator><creator>Cui, Jiwei</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9760-9677</orcidid><orcidid>https://orcid.org/0000-0003-1018-4336</orcidid><orcidid>https://orcid.org/0000-0002-3161-676X</orcidid></search><sort><creationdate>20230208</creationdate><title>Modulation of double-network hydrogels via seeding calcium carbonate microparticles for the engineering of ultrasensitive wearable sensors</title><author>Zhang, Xiaohui ; Geng, Huimin ; Zhang, Xunhui ; Liu, Yaqing ; Hao, Jingcheng ; Cui, Jiwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-d118ffb6afd59858ae932094cb19ace8a91d371e5070f5a53f069314c4a0a90f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actuators</topic><topic>Alginic acid</topic><topic>Biocompatibility</topic><topic>Biomedical engineering</topic><topic>Biomedical materials</topic><topic>Calcium carbonate</topic><topic>Calcium ions</topic><topic>Cascade chemical reactions</topic><topic>Controllability</topic><topic>Crosslinking</topic><topic>Diabetes mellitus</topic><topic>Durability</topic><topic>Energy dissipation</topic><topic>Fracture toughness</topic><topic>Hydrogels</topic><topic>Inhomogeneity</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>Microparticles</topic><topic>Pain</topic><topic>Polyacrylamide</topic><topic>Polymers</topic><topic>Sodium alginate</topic><topic>Strain gauges</topic><topic>Stretchability</topic><topic>Tensile strength</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiaohui</creatorcontrib><creatorcontrib>Geng, Huimin</creatorcontrib><creatorcontrib>Zhang, Xunhui</creatorcontrib><creatorcontrib>Liu, Yaqing</creatorcontrib><creatorcontrib>Hao, Jingcheng</creatorcontrib><creatorcontrib>Cui, Jiwei</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xiaohui</au><au>Geng, Huimin</au><au>Zhang, Xunhui</au><au>Liu, Yaqing</au><au>Hao, Jingcheng</au><au>Cui, Jiwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulation of double-network hydrogels via seeding calcium carbonate microparticles for the engineering of ultrasensitive wearable sensors</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2023-02-08</date><risdate>2023</risdate><volume>11</volume><issue>6</issue><spage>2996</spage><epage>3007</epage><pages>2996-3007</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Double-network (DN) hydrogels with high strength and toughness have shown their potential for applications in materials science and biomedical engineering. Biocompatible sodium alginate (SA)/polyacrylamide (PAM) hydrogels are a promising class of DN hydrogels, which are typically cross-linked with calcium ions (Ca
2+
). However, the use of calcium salts typically induces structural inhomogeneity and reduces the mechanical properties of the resultant hydrogels, which limit their application in tissue scaffolds, actuators, and wearable devices. Herein, we fabricate a homogeneous polymer DN hydrogel by pre-seeding calcium carbonate (CaCO
3
) microparticles into SA/PAM hydrogels, followed by the triggered release of Ca
2+
from the microparticles in acidic solution. The acid-triggered cross-linking generates sacrificial ionic bonds capable of dissipating energy, which endows the Ca
2+
/SA/PAM DN hydrogels with high tensile strength (0.85 MPa), stretchability (1850%), and fracture toughness (6.4 MJ m
−3
). These properties can be easily adjusted by controlling the trigger time as well as the concentration of the CaCO
3
microparticles. In addition, the Ca
2+
/SA/PAM DN hydrogel exhibits high strain sensitivity with a gauge factor of ∼8.9, a wide strain detection range (0.03–1800%), and excellent durability (500 cycles at a strain of 50%), which can be used as a strain sensor to monitor human motions with a fast response (∼0.02 s). Furthermore, the Ca
2+
/SA/PAM DN hydrogel as a sensor can monitor the pain signal induced by an
in situ
cascade reaction at a wound site in a diabetic rat model. This study provides a controllable strategy to engineer stretchable and tough DN hydrogels for potential applications in flexible devices.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/D2TA07834A</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9760-9677</orcidid><orcidid>https://orcid.org/0000-0003-1018-4336</orcidid><orcidid>https://orcid.org/0000-0002-3161-676X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2023-02, Vol.11 (6), p.2996-3007 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2774136615 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Actuators Alginic acid Biocompatibility Biomedical engineering Biomedical materials Calcium carbonate Calcium ions Cascade chemical reactions Controllability Crosslinking Diabetes mellitus Durability Energy dissipation Fracture toughness Hydrogels Inhomogeneity Materials science Mechanical properties Microparticles Pain Polyacrylamide Polymers Sodium alginate Strain gauges Stretchability Tensile strength Wearable technology |
title | Modulation of double-network hydrogels via seeding calcium carbonate microparticles for the engineering of ultrasensitive wearable sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A31%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulation%20of%20double-network%20hydrogels%20via%20seeding%20calcium%20carbonate%20microparticles%20for%20the%20engineering%20of%20ultrasensitive%20wearable%20sensors&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Zhang,%20Xiaohui&rft.date=2023-02-08&rft.volume=11&rft.issue=6&rft.spage=2996&rft.epage=3007&rft.pages=2996-3007&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/D2TA07834A&rft_dat=%3Cproquest_cross%3E2774136615%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774136615&rft_id=info:pmid/&rfr_iscdi=true |