Modulation of double-network hydrogels via seeding calcium carbonate microparticles for the engineering of ultrasensitive wearable sensors

Double-network (DN) hydrogels with high strength and toughness have shown their potential for applications in materials science and biomedical engineering. Biocompatible sodium alginate (SA)/polyacrylamide (PAM) hydrogels are a promising class of DN hydrogels, which are typically cross-linked with c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-02, Vol.11 (6), p.2996-3007
Hauptverfasser: Zhang, Xiaohui, Geng, Huimin, Zhang, Xunhui, Liu, Yaqing, Hao, Jingcheng, Cui, Jiwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3007
container_issue 6
container_start_page 2996
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 11
creator Zhang, Xiaohui
Geng, Huimin
Zhang, Xunhui
Liu, Yaqing
Hao, Jingcheng
Cui, Jiwei
description Double-network (DN) hydrogels with high strength and toughness have shown their potential for applications in materials science and biomedical engineering. Biocompatible sodium alginate (SA)/polyacrylamide (PAM) hydrogels are a promising class of DN hydrogels, which are typically cross-linked with calcium ions (Ca 2+ ). However, the use of calcium salts typically induces structural inhomogeneity and reduces the mechanical properties of the resultant hydrogels, which limit their application in tissue scaffolds, actuators, and wearable devices. Herein, we fabricate a homogeneous polymer DN hydrogel by pre-seeding calcium carbonate (CaCO 3 ) microparticles into SA/PAM hydrogels, followed by the triggered release of Ca 2+ from the microparticles in acidic solution. The acid-triggered cross-linking generates sacrificial ionic bonds capable of dissipating energy, which endows the Ca 2+ /SA/PAM DN hydrogels with high tensile strength (0.85 MPa), stretchability (1850%), and fracture toughness (6.4 MJ m −3 ). These properties can be easily adjusted by controlling the trigger time as well as the concentration of the CaCO 3 microparticles. In addition, the Ca 2+ /SA/PAM DN hydrogel exhibits high strain sensitivity with a gauge factor of ∼8.9, a wide strain detection range (0.03–1800%), and excellent durability (500 cycles at a strain of 50%), which can be used as a strain sensor to monitor human motions with a fast response (∼0.02 s). Furthermore, the Ca 2+ /SA/PAM DN hydrogel as a sensor can monitor the pain signal induced by an in situ cascade reaction at a wound site in a diabetic rat model. This study provides a controllable strategy to engineer stretchable and tough DN hydrogels for potential applications in flexible devices.
doi_str_mv 10.1039/D2TA07834A
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2774136615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2774136615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-d118ffb6afd59858ae932094cb19ace8a91d371e5070f5a53f069314c4a0a90f3</originalsourceid><addsrcrecordid>eNpFUMtOwzAQtBBIVKUXvsASN6SAHeflY1WeUhGXco42ybp1Se1iO636C3w1ropgL7Nazc5ohpBrzu44E_L-IV1MWVmJbHpGRinLWVJmsjj_26vqkky8X7M4FWOFlCPy_Wa7oYegraFW0c4OTY-JwbC37pOuDp2zS-w93WmgHrHTZklb6Fs9bCK6xhoISDe6dXYLLui2R0-VdTSskKJZaoPojk9RfOiDA4_G66B3SPcIDqIbPZ6s81fkQkHvcfKLY_Lx9LiYvSTz9-fX2XSetGkuQ9JxXinVFKC6XFZ5BShFymTWNlxCixVI3omSY85KpnLIhYpJBc_aDBhIpsSY3Jx0t85-DehDvbaDM9GyTssy46IoeB5ZtydWTOa9Q1Vvnd6AO9Sc1ce66_-6xQ8VVnWD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774136615</pqid></control><display><type>article</type><title>Modulation of double-network hydrogels via seeding calcium carbonate microparticles for the engineering of ultrasensitive wearable sensors</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Zhang, Xiaohui ; Geng, Huimin ; Zhang, Xunhui ; Liu, Yaqing ; Hao, Jingcheng ; Cui, Jiwei</creator><creatorcontrib>Zhang, Xiaohui ; Geng, Huimin ; Zhang, Xunhui ; Liu, Yaqing ; Hao, Jingcheng ; Cui, Jiwei</creatorcontrib><description>Double-network (DN) hydrogels with high strength and toughness have shown their potential for applications in materials science and biomedical engineering. Biocompatible sodium alginate (SA)/polyacrylamide (PAM) hydrogels are a promising class of DN hydrogels, which are typically cross-linked with calcium ions (Ca 2+ ). However, the use of calcium salts typically induces structural inhomogeneity and reduces the mechanical properties of the resultant hydrogels, which limit their application in tissue scaffolds, actuators, and wearable devices. Herein, we fabricate a homogeneous polymer DN hydrogel by pre-seeding calcium carbonate (CaCO 3 ) microparticles into SA/PAM hydrogels, followed by the triggered release of Ca 2+ from the microparticles in acidic solution. The acid-triggered cross-linking generates sacrificial ionic bonds capable of dissipating energy, which endows the Ca 2+ /SA/PAM DN hydrogels with high tensile strength (0.85 MPa), stretchability (1850%), and fracture toughness (6.4 MJ m −3 ). These properties can be easily adjusted by controlling the trigger time as well as the concentration of the CaCO 3 microparticles. In addition, the Ca 2+ /SA/PAM DN hydrogel exhibits high strain sensitivity with a gauge factor of ∼8.9, a wide strain detection range (0.03–1800%), and excellent durability (500 cycles at a strain of 50%), which can be used as a strain sensor to monitor human motions with a fast response (∼0.02 s). Furthermore, the Ca 2+ /SA/PAM DN hydrogel as a sensor can monitor the pain signal induced by an in situ cascade reaction at a wound site in a diabetic rat model. This study provides a controllable strategy to engineer stretchable and tough DN hydrogels for potential applications in flexible devices.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/D2TA07834A</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Actuators ; Alginic acid ; Biocompatibility ; Biomedical engineering ; Biomedical materials ; Calcium carbonate ; Calcium ions ; Cascade chemical reactions ; Controllability ; Crosslinking ; Diabetes mellitus ; Durability ; Energy dissipation ; Fracture toughness ; Hydrogels ; Inhomogeneity ; Materials science ; Mechanical properties ; Microparticles ; Pain ; Polyacrylamide ; Polymers ; Sodium alginate ; Strain gauges ; Stretchability ; Tensile strength ; Wearable technology</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2023-02, Vol.11 (6), p.2996-3007</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-d118ffb6afd59858ae932094cb19ace8a91d371e5070f5a53f069314c4a0a90f3</citedby><cites>FETCH-LOGICAL-c259t-d118ffb6afd59858ae932094cb19ace8a91d371e5070f5a53f069314c4a0a90f3</cites><orcidid>0000-0002-9760-9677 ; 0000-0003-1018-4336 ; 0000-0002-3161-676X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Zhang, Xiaohui</creatorcontrib><creatorcontrib>Geng, Huimin</creatorcontrib><creatorcontrib>Zhang, Xunhui</creatorcontrib><creatorcontrib>Liu, Yaqing</creatorcontrib><creatorcontrib>Hao, Jingcheng</creatorcontrib><creatorcontrib>Cui, Jiwei</creatorcontrib><title>Modulation of double-network hydrogels via seeding calcium carbonate microparticles for the engineering of ultrasensitive wearable sensors</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Double-network (DN) hydrogels with high strength and toughness have shown their potential for applications in materials science and biomedical engineering. Biocompatible sodium alginate (SA)/polyacrylamide (PAM) hydrogels are a promising class of DN hydrogels, which are typically cross-linked with calcium ions (Ca 2+ ). However, the use of calcium salts typically induces structural inhomogeneity and reduces the mechanical properties of the resultant hydrogels, which limit their application in tissue scaffolds, actuators, and wearable devices. Herein, we fabricate a homogeneous polymer DN hydrogel by pre-seeding calcium carbonate (CaCO 3 ) microparticles into SA/PAM hydrogels, followed by the triggered release of Ca 2+ from the microparticles in acidic solution. The acid-triggered cross-linking generates sacrificial ionic bonds capable of dissipating energy, which endows the Ca 2+ /SA/PAM DN hydrogels with high tensile strength (0.85 MPa), stretchability (1850%), and fracture toughness (6.4 MJ m −3 ). These properties can be easily adjusted by controlling the trigger time as well as the concentration of the CaCO 3 microparticles. In addition, the Ca 2+ /SA/PAM DN hydrogel exhibits high strain sensitivity with a gauge factor of ∼8.9, a wide strain detection range (0.03–1800%), and excellent durability (500 cycles at a strain of 50%), which can be used as a strain sensor to monitor human motions with a fast response (∼0.02 s). Furthermore, the Ca 2+ /SA/PAM DN hydrogel as a sensor can monitor the pain signal induced by an in situ cascade reaction at a wound site in a diabetic rat model. This study provides a controllable strategy to engineer stretchable and tough DN hydrogels for potential applications in flexible devices.</description><subject>Actuators</subject><subject>Alginic acid</subject><subject>Biocompatibility</subject><subject>Biomedical engineering</subject><subject>Biomedical materials</subject><subject>Calcium carbonate</subject><subject>Calcium ions</subject><subject>Cascade chemical reactions</subject><subject>Controllability</subject><subject>Crosslinking</subject><subject>Diabetes mellitus</subject><subject>Durability</subject><subject>Energy dissipation</subject><subject>Fracture toughness</subject><subject>Hydrogels</subject><subject>Inhomogeneity</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>Microparticles</subject><subject>Pain</subject><subject>Polyacrylamide</subject><subject>Polymers</subject><subject>Sodium alginate</subject><subject>Strain gauges</subject><subject>Stretchability</subject><subject>Tensile strength</subject><subject>Wearable technology</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFUMtOwzAQtBBIVKUXvsASN6SAHeflY1WeUhGXco42ybp1Se1iO636C3w1ropgL7Nazc5ohpBrzu44E_L-IV1MWVmJbHpGRinLWVJmsjj_26vqkky8X7M4FWOFlCPy_Wa7oYegraFW0c4OTY-JwbC37pOuDp2zS-w93WmgHrHTZklb6Fs9bCK6xhoISDe6dXYLLui2R0-VdTSskKJZaoPojk9RfOiDA4_G66B3SPcIDqIbPZ6s81fkQkHvcfKLY_Lx9LiYvSTz9-fX2XSetGkuQ9JxXinVFKC6XFZ5BShFymTWNlxCixVI3omSY85KpnLIhYpJBc_aDBhIpsSY3Jx0t85-DehDvbaDM9GyTssy46IoeB5ZtydWTOa9Q1Vvnd6AO9Sc1ce66_-6xQ8VVnWD</recordid><startdate>20230208</startdate><enddate>20230208</enddate><creator>Zhang, Xiaohui</creator><creator>Geng, Huimin</creator><creator>Zhang, Xunhui</creator><creator>Liu, Yaqing</creator><creator>Hao, Jingcheng</creator><creator>Cui, Jiwei</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9760-9677</orcidid><orcidid>https://orcid.org/0000-0003-1018-4336</orcidid><orcidid>https://orcid.org/0000-0002-3161-676X</orcidid></search><sort><creationdate>20230208</creationdate><title>Modulation of double-network hydrogels via seeding calcium carbonate microparticles for the engineering of ultrasensitive wearable sensors</title><author>Zhang, Xiaohui ; Geng, Huimin ; Zhang, Xunhui ; Liu, Yaqing ; Hao, Jingcheng ; Cui, Jiwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-d118ffb6afd59858ae932094cb19ace8a91d371e5070f5a53f069314c4a0a90f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actuators</topic><topic>Alginic acid</topic><topic>Biocompatibility</topic><topic>Biomedical engineering</topic><topic>Biomedical materials</topic><topic>Calcium carbonate</topic><topic>Calcium ions</topic><topic>Cascade chemical reactions</topic><topic>Controllability</topic><topic>Crosslinking</topic><topic>Diabetes mellitus</topic><topic>Durability</topic><topic>Energy dissipation</topic><topic>Fracture toughness</topic><topic>Hydrogels</topic><topic>Inhomogeneity</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>Microparticles</topic><topic>Pain</topic><topic>Polyacrylamide</topic><topic>Polymers</topic><topic>Sodium alginate</topic><topic>Strain gauges</topic><topic>Stretchability</topic><topic>Tensile strength</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiaohui</creatorcontrib><creatorcontrib>Geng, Huimin</creatorcontrib><creatorcontrib>Zhang, Xunhui</creatorcontrib><creatorcontrib>Liu, Yaqing</creatorcontrib><creatorcontrib>Hao, Jingcheng</creatorcontrib><creatorcontrib>Cui, Jiwei</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xiaohui</au><au>Geng, Huimin</au><au>Zhang, Xunhui</au><au>Liu, Yaqing</au><au>Hao, Jingcheng</au><au>Cui, Jiwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulation of double-network hydrogels via seeding calcium carbonate microparticles for the engineering of ultrasensitive wearable sensors</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2023-02-08</date><risdate>2023</risdate><volume>11</volume><issue>6</issue><spage>2996</spage><epage>3007</epage><pages>2996-3007</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Double-network (DN) hydrogels with high strength and toughness have shown their potential for applications in materials science and biomedical engineering. Biocompatible sodium alginate (SA)/polyacrylamide (PAM) hydrogels are a promising class of DN hydrogels, which are typically cross-linked with calcium ions (Ca 2+ ). However, the use of calcium salts typically induces structural inhomogeneity and reduces the mechanical properties of the resultant hydrogels, which limit their application in tissue scaffolds, actuators, and wearable devices. Herein, we fabricate a homogeneous polymer DN hydrogel by pre-seeding calcium carbonate (CaCO 3 ) microparticles into SA/PAM hydrogels, followed by the triggered release of Ca 2+ from the microparticles in acidic solution. The acid-triggered cross-linking generates sacrificial ionic bonds capable of dissipating energy, which endows the Ca 2+ /SA/PAM DN hydrogels with high tensile strength (0.85 MPa), stretchability (1850%), and fracture toughness (6.4 MJ m −3 ). These properties can be easily adjusted by controlling the trigger time as well as the concentration of the CaCO 3 microparticles. In addition, the Ca 2+ /SA/PAM DN hydrogel exhibits high strain sensitivity with a gauge factor of ∼8.9, a wide strain detection range (0.03–1800%), and excellent durability (500 cycles at a strain of 50%), which can be used as a strain sensor to monitor human motions with a fast response (∼0.02 s). Furthermore, the Ca 2+ /SA/PAM DN hydrogel as a sensor can monitor the pain signal induced by an in situ cascade reaction at a wound site in a diabetic rat model. This study provides a controllable strategy to engineer stretchable and tough DN hydrogels for potential applications in flexible devices.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/D2TA07834A</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9760-9677</orcidid><orcidid>https://orcid.org/0000-0003-1018-4336</orcidid><orcidid>https://orcid.org/0000-0002-3161-676X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2023-02, Vol.11 (6), p.2996-3007
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2774136615
source Royal Society Of Chemistry Journals 2008-
subjects Actuators
Alginic acid
Biocompatibility
Biomedical engineering
Biomedical materials
Calcium carbonate
Calcium ions
Cascade chemical reactions
Controllability
Crosslinking
Diabetes mellitus
Durability
Energy dissipation
Fracture toughness
Hydrogels
Inhomogeneity
Materials science
Mechanical properties
Microparticles
Pain
Polyacrylamide
Polymers
Sodium alginate
Strain gauges
Stretchability
Tensile strength
Wearable technology
title Modulation of double-network hydrogels via seeding calcium carbonate microparticles for the engineering of ultrasensitive wearable sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A31%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulation%20of%20double-network%20hydrogels%20via%20seeding%20calcium%20carbonate%20microparticles%20for%20the%20engineering%20of%20ultrasensitive%20wearable%20sensors&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Zhang,%20Xiaohui&rft.date=2023-02-08&rft.volume=11&rft.issue=6&rft.spage=2996&rft.epage=3007&rft.pages=2996-3007&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/D2TA07834A&rft_dat=%3Cproquest_cross%3E2774136615%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774136615&rft_id=info:pmid/&rfr_iscdi=true