An Index-Flood Statistical Model for Hydrological Drought Assessment

Modelling of hydrological extremes and drought modelling in particular has received much attention over recent decades. The main aim of this study is to apply a statistical model for drought estimation (in this case deficit volume) using extreme value theory and the index-flood method and to reduce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2020-04, Vol.12 (4), p.1213
Hauptverfasser: Strnad, Filip, Moravec, Vojtěch, Markonis, Yannis, Máca, Petr, Masner, Jan, Stočes, Michal, Hanel, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 1213
container_title Water (Basel)
container_volume 12
creator Strnad, Filip
Moravec, Vojtěch
Markonis, Yannis
Máca, Petr
Masner, Jan
Stočes, Michal
Hanel, Martin
description Modelling of hydrological extremes and drought modelling in particular has received much attention over recent decades. The main aim of this study is to apply a statistical model for drought estimation (in this case deficit volume) using extreme value theory and the index-flood method and to reduce the uncertainties in estimation of drought event return levels. Deficit volumes for 133 catchments in the Czech Republic (1901–2015) were simulated by hydrological model BILAN. The validation of severity, intensity and length of simulated drought events revealed good match with the available observed data. To estimate return levels of the deficit volumes, it is assumed (in accord with the index-flood method), that the deficit volumes within a homogeneous region are identically distributed after scaling with a site-specific factor. The parameters of the scaled regional distribution are estimated using L-moments. The goodness-of-fit of the statistical model is assessed by Anderson–Darling test. For the estimation of critical values, sampling methods allowing for handling of years without drought were used. It is shown, that the index-flood model with a Generalized Pareto distribution performs well and substantially reduces the uncertainty related to the estimation of the shape parameter and of the large deficit volume quantiles.
doi_str_mv 10.3390/w12041213
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2774058145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A791294737</galeid><sourcerecordid>A791294737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-4ef907edd0f76a38f373cea025c8730a6312432d942837c4423da8ffc95a284c3</originalsourceid><addsrcrecordid>eNpNUE1LAzEQDaJgqT34DxY8ediaZLJNclxaawsVD-o5hHzULdtNTVK0_97VFXHmMI_Hm5nHQ-ia4CmAxHcfhGJGKIEzNKKYQ8kYI-f_8CWapLTDfTEpRIVHaFF3xbqz7rNctiHY4jnr3KTcGN0Wj8G6tvAhFquTjaEN2x96EcNx-5aLOiWX0t51-QpdeN0mN_mdY_S6vH-Zr8rN08N6Xm9KA0ByyZyXmDtrseczDcIDB-M0ppURHLCeAaEMqJWMCuCGMQpWC--NrDQVzMAY3Qx3DzG8H13KaheOsetfKso5w5UgrOpV00G11a1TTedDjtr0bd2-MaFzvun5mktCJeO9hzG6HRZMDClF59UhNnsdT4pg9R2s-gsWvgACvWg8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774058145</pqid></control><display><type>article</type><title>An Index-Flood Statistical Model for Hydrological Drought Assessment</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Strnad, Filip ; Moravec, Vojtěch ; Markonis, Yannis ; Máca, Petr ; Masner, Jan ; Stočes, Michal ; Hanel, Martin</creator><creatorcontrib>Strnad, Filip ; Moravec, Vojtěch ; Markonis, Yannis ; Máca, Petr ; Masner, Jan ; Stočes, Michal ; Hanel, Martin</creatorcontrib><description>Modelling of hydrological extremes and drought modelling in particular has received much attention over recent decades. The main aim of this study is to apply a statistical model for drought estimation (in this case deficit volume) using extreme value theory and the index-flood method and to reduce the uncertainties in estimation of drought event return levels. Deficit volumes for 133 catchments in the Czech Republic (1901–2015) were simulated by hydrological model BILAN. The validation of severity, intensity and length of simulated drought events revealed good match with the available observed data. To estimate return levels of the deficit volumes, it is assumed (in accord with the index-flood method), that the deficit volumes within a homogeneous region are identically distributed after scaling with a site-specific factor. The parameters of the scaled regional distribution are estimated using L-moments. The goodness-of-fit of the statistical model is assessed by Anderson–Darling test. For the estimation of critical values, sampling methods allowing for handling of years without drought were used. It is shown, that the index-flood model with a Generalized Pareto distribution performs well and substantially reduces the uncertainty related to the estimation of the shape parameter and of the large deficit volume quantiles.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w12041213</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Altitude ; Analysis ; Book publishing ; Catchments ; Climate change ; Drought ; Extreme value theory ; Floods ; Goodness of fit ; Hydrologic models ; Hydrology ; Mathematical models ; Precipitation ; Rain ; Runoff ; Sampling methods ; Statistical models ; Stream flow ; Time series ; Uncertainty ; Water shortages ; Weather</subject><ispartof>Water (Basel), 2020-04, Vol.12 (4), p.1213</ispartof><rights>COPYRIGHT 2020 MDPI AG</rights><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-4ef907edd0f76a38f373cea025c8730a6312432d942837c4423da8ffc95a284c3</citedby><cites>FETCH-LOGICAL-c331t-4ef907edd0f76a38f373cea025c8730a6312432d942837c4423da8ffc95a284c3</cites><orcidid>0000-0003-4593-2306 ; 0000-0003-4669-2869 ; 0000-0001-8317-6711 ; 0000-0003-0144-8969 ; 0000-0002-4972-3993 ; 0000-0003-0358-9837</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Strnad, Filip</creatorcontrib><creatorcontrib>Moravec, Vojtěch</creatorcontrib><creatorcontrib>Markonis, Yannis</creatorcontrib><creatorcontrib>Máca, Petr</creatorcontrib><creatorcontrib>Masner, Jan</creatorcontrib><creatorcontrib>Stočes, Michal</creatorcontrib><creatorcontrib>Hanel, Martin</creatorcontrib><title>An Index-Flood Statistical Model for Hydrological Drought Assessment</title><title>Water (Basel)</title><description>Modelling of hydrological extremes and drought modelling in particular has received much attention over recent decades. The main aim of this study is to apply a statistical model for drought estimation (in this case deficit volume) using extreme value theory and the index-flood method and to reduce the uncertainties in estimation of drought event return levels. Deficit volumes for 133 catchments in the Czech Republic (1901–2015) were simulated by hydrological model BILAN. The validation of severity, intensity and length of simulated drought events revealed good match with the available observed data. To estimate return levels of the deficit volumes, it is assumed (in accord with the index-flood method), that the deficit volumes within a homogeneous region are identically distributed after scaling with a site-specific factor. The parameters of the scaled regional distribution are estimated using L-moments. The goodness-of-fit of the statistical model is assessed by Anderson–Darling test. For the estimation of critical values, sampling methods allowing for handling of years without drought were used. It is shown, that the index-flood model with a Generalized Pareto distribution performs well and substantially reduces the uncertainty related to the estimation of the shape parameter and of the large deficit volume quantiles.</description><subject>Altitude</subject><subject>Analysis</subject><subject>Book publishing</subject><subject>Catchments</subject><subject>Climate change</subject><subject>Drought</subject><subject>Extreme value theory</subject><subject>Floods</subject><subject>Goodness of fit</subject><subject>Hydrologic models</subject><subject>Hydrology</subject><subject>Mathematical models</subject><subject>Precipitation</subject><subject>Rain</subject><subject>Runoff</subject><subject>Sampling methods</subject><subject>Statistical models</subject><subject>Stream flow</subject><subject>Time series</subject><subject>Uncertainty</subject><subject>Water shortages</subject><subject>Weather</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNUE1LAzEQDaJgqT34DxY8ediaZLJNclxaawsVD-o5hHzULdtNTVK0_97VFXHmMI_Hm5nHQ-ia4CmAxHcfhGJGKIEzNKKYQ8kYI-f_8CWapLTDfTEpRIVHaFF3xbqz7rNctiHY4jnr3KTcGN0Wj8G6tvAhFquTjaEN2x96EcNx-5aLOiWX0t51-QpdeN0mN_mdY_S6vH-Zr8rN08N6Xm9KA0ByyZyXmDtrseczDcIDB-M0ppURHLCeAaEMqJWMCuCGMQpWC--NrDQVzMAY3Qx3DzG8H13KaheOsetfKso5w5UgrOpV00G11a1TTedDjtr0bd2-MaFzvun5mktCJeO9hzG6HRZMDClF59UhNnsdT4pg9R2s-gsWvgACvWg8</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Strnad, Filip</creator><creator>Moravec, Vojtěch</creator><creator>Markonis, Yannis</creator><creator>Máca, Petr</creator><creator>Masner, Jan</creator><creator>Stočes, Michal</creator><creator>Hanel, Martin</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-4593-2306</orcidid><orcidid>https://orcid.org/0000-0003-4669-2869</orcidid><orcidid>https://orcid.org/0000-0001-8317-6711</orcidid><orcidid>https://orcid.org/0000-0003-0144-8969</orcidid><orcidid>https://orcid.org/0000-0002-4972-3993</orcidid><orcidid>https://orcid.org/0000-0003-0358-9837</orcidid></search><sort><creationdate>20200401</creationdate><title>An Index-Flood Statistical Model for Hydrological Drought Assessment</title><author>Strnad, Filip ; Moravec, Vojtěch ; Markonis, Yannis ; Máca, Petr ; Masner, Jan ; Stočes, Michal ; Hanel, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-4ef907edd0f76a38f373cea025c8730a6312432d942837c4423da8ffc95a284c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Altitude</topic><topic>Analysis</topic><topic>Book publishing</topic><topic>Catchments</topic><topic>Climate change</topic><topic>Drought</topic><topic>Extreme value theory</topic><topic>Floods</topic><topic>Goodness of fit</topic><topic>Hydrologic models</topic><topic>Hydrology</topic><topic>Mathematical models</topic><topic>Precipitation</topic><topic>Rain</topic><topic>Runoff</topic><topic>Sampling methods</topic><topic>Statistical models</topic><topic>Stream flow</topic><topic>Time series</topic><topic>Uncertainty</topic><topic>Water shortages</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Strnad, Filip</creatorcontrib><creatorcontrib>Moravec, Vojtěch</creatorcontrib><creatorcontrib>Markonis, Yannis</creatorcontrib><creatorcontrib>Máca, Petr</creatorcontrib><creatorcontrib>Masner, Jan</creatorcontrib><creatorcontrib>Stočes, Michal</creatorcontrib><creatorcontrib>Hanel, Martin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Strnad, Filip</au><au>Moravec, Vojtěch</au><au>Markonis, Yannis</au><au>Máca, Petr</au><au>Masner, Jan</au><au>Stočes, Michal</au><au>Hanel, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Index-Flood Statistical Model for Hydrological Drought Assessment</atitle><jtitle>Water (Basel)</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>12</volume><issue>4</issue><spage>1213</spage><pages>1213-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>Modelling of hydrological extremes and drought modelling in particular has received much attention over recent decades. The main aim of this study is to apply a statistical model for drought estimation (in this case deficit volume) using extreme value theory and the index-flood method and to reduce the uncertainties in estimation of drought event return levels. Deficit volumes for 133 catchments in the Czech Republic (1901–2015) were simulated by hydrological model BILAN. The validation of severity, intensity and length of simulated drought events revealed good match with the available observed data. To estimate return levels of the deficit volumes, it is assumed (in accord with the index-flood method), that the deficit volumes within a homogeneous region are identically distributed after scaling with a site-specific factor. The parameters of the scaled regional distribution are estimated using L-moments. The goodness-of-fit of the statistical model is assessed by Anderson–Darling test. For the estimation of critical values, sampling methods allowing for handling of years without drought were used. It is shown, that the index-flood model with a Generalized Pareto distribution performs well and substantially reduces the uncertainty related to the estimation of the shape parameter and of the large deficit volume quantiles.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w12041213</doi><orcidid>https://orcid.org/0000-0003-4593-2306</orcidid><orcidid>https://orcid.org/0000-0003-4669-2869</orcidid><orcidid>https://orcid.org/0000-0001-8317-6711</orcidid><orcidid>https://orcid.org/0000-0003-0144-8969</orcidid><orcidid>https://orcid.org/0000-0002-4972-3993</orcidid><orcidid>https://orcid.org/0000-0003-0358-9837</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4441
ispartof Water (Basel), 2020-04, Vol.12 (4), p.1213
issn 2073-4441
2073-4441
language eng
recordid cdi_proquest_journals_2774058145
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Altitude
Analysis
Book publishing
Catchments
Climate change
Drought
Extreme value theory
Floods
Goodness of fit
Hydrologic models
Hydrology
Mathematical models
Precipitation
Rain
Runoff
Sampling methods
Statistical models
Stream flow
Time series
Uncertainty
Water shortages
Weather
title An Index-Flood Statistical Model for Hydrological Drought Assessment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A50%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Index-Flood%20Statistical%20Model%20for%20Hydrological%20Drought%20Assessment&rft.jtitle=Water%20(Basel)&rft.au=Strnad,%20Filip&rft.date=2020-04-01&rft.volume=12&rft.issue=4&rft.spage=1213&rft.pages=1213-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w12041213&rft_dat=%3Cgale_proqu%3EA791294737%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774058145&rft_id=info:pmid/&rft_galeid=A791294737&rfr_iscdi=true