An Index-Flood Statistical Model for Hydrological Drought Assessment
Modelling of hydrological extremes and drought modelling in particular has received much attention over recent decades. The main aim of this study is to apply a statistical model for drought estimation (in this case deficit volume) using extreme value theory and the index-flood method and to reduce...
Gespeichert in:
Veröffentlicht in: | Water (Basel) 2020-04, Vol.12 (4), p.1213 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 1213 |
container_title | Water (Basel) |
container_volume | 12 |
creator | Strnad, Filip Moravec, Vojtěch Markonis, Yannis Máca, Petr Masner, Jan Stočes, Michal Hanel, Martin |
description | Modelling of hydrological extremes and drought modelling in particular has received much attention over recent decades. The main aim of this study is to apply a statistical model for drought estimation (in this case deficit volume) using extreme value theory and the index-flood method and to reduce the uncertainties in estimation of drought event return levels. Deficit volumes for 133 catchments in the Czech Republic (1901–2015) were simulated by hydrological model BILAN. The validation of severity, intensity and length of simulated drought events revealed good match with the available observed data. To estimate return levels of the deficit volumes, it is assumed (in accord with the index-flood method), that the deficit volumes within a homogeneous region are identically distributed after scaling with a site-specific factor. The parameters of the scaled regional distribution are estimated using L-moments. The goodness-of-fit of the statistical model is assessed by Anderson–Darling test. For the estimation of critical values, sampling methods allowing for handling of years without drought were used. It is shown, that the index-flood model with a Generalized Pareto distribution performs well and substantially reduces the uncertainty related to the estimation of the shape parameter and of the large deficit volume quantiles. |
doi_str_mv | 10.3390/w12041213 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2774058145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A791294737</galeid><sourcerecordid>A791294737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-4ef907edd0f76a38f373cea025c8730a6312432d942837c4423da8ffc95a284c3</originalsourceid><addsrcrecordid>eNpNUE1LAzEQDaJgqT34DxY8ediaZLJNclxaawsVD-o5hHzULdtNTVK0_97VFXHmMI_Hm5nHQ-ia4CmAxHcfhGJGKIEzNKKYQ8kYI-f_8CWapLTDfTEpRIVHaFF3xbqz7rNctiHY4jnr3KTcGN0Wj8G6tvAhFquTjaEN2x96EcNx-5aLOiWX0t51-QpdeN0mN_mdY_S6vH-Zr8rN08N6Xm9KA0ByyZyXmDtrseczDcIDB-M0ppURHLCeAaEMqJWMCuCGMQpWC--NrDQVzMAY3Qx3DzG8H13KaheOsetfKso5w5UgrOpV00G11a1TTedDjtr0bd2-MaFzvun5mktCJeO9hzG6HRZMDClF59UhNnsdT4pg9R2s-gsWvgACvWg8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774058145</pqid></control><display><type>article</type><title>An Index-Flood Statistical Model for Hydrological Drought Assessment</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Strnad, Filip ; Moravec, Vojtěch ; Markonis, Yannis ; Máca, Petr ; Masner, Jan ; Stočes, Michal ; Hanel, Martin</creator><creatorcontrib>Strnad, Filip ; Moravec, Vojtěch ; Markonis, Yannis ; Máca, Petr ; Masner, Jan ; Stočes, Michal ; Hanel, Martin</creatorcontrib><description>Modelling of hydrological extremes and drought modelling in particular has received much attention over recent decades. The main aim of this study is to apply a statistical model for drought estimation (in this case deficit volume) using extreme value theory and the index-flood method and to reduce the uncertainties in estimation of drought event return levels. Deficit volumes for 133 catchments in the Czech Republic (1901–2015) were simulated by hydrological model BILAN. The validation of severity, intensity and length of simulated drought events revealed good match with the available observed data. To estimate return levels of the deficit volumes, it is assumed (in accord with the index-flood method), that the deficit volumes within a homogeneous region are identically distributed after scaling with a site-specific factor. The parameters of the scaled regional distribution are estimated using L-moments. The goodness-of-fit of the statistical model is assessed by Anderson–Darling test. For the estimation of critical values, sampling methods allowing for handling of years without drought were used. It is shown, that the index-flood model with a Generalized Pareto distribution performs well and substantially reduces the uncertainty related to the estimation of the shape parameter and of the large deficit volume quantiles.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w12041213</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Altitude ; Analysis ; Book publishing ; Catchments ; Climate change ; Drought ; Extreme value theory ; Floods ; Goodness of fit ; Hydrologic models ; Hydrology ; Mathematical models ; Precipitation ; Rain ; Runoff ; Sampling methods ; Statistical models ; Stream flow ; Time series ; Uncertainty ; Water shortages ; Weather</subject><ispartof>Water (Basel), 2020-04, Vol.12 (4), p.1213</ispartof><rights>COPYRIGHT 2020 MDPI AG</rights><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-4ef907edd0f76a38f373cea025c8730a6312432d942837c4423da8ffc95a284c3</citedby><cites>FETCH-LOGICAL-c331t-4ef907edd0f76a38f373cea025c8730a6312432d942837c4423da8ffc95a284c3</cites><orcidid>0000-0003-4593-2306 ; 0000-0003-4669-2869 ; 0000-0001-8317-6711 ; 0000-0003-0144-8969 ; 0000-0002-4972-3993 ; 0000-0003-0358-9837</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Strnad, Filip</creatorcontrib><creatorcontrib>Moravec, Vojtěch</creatorcontrib><creatorcontrib>Markonis, Yannis</creatorcontrib><creatorcontrib>Máca, Petr</creatorcontrib><creatorcontrib>Masner, Jan</creatorcontrib><creatorcontrib>Stočes, Michal</creatorcontrib><creatorcontrib>Hanel, Martin</creatorcontrib><title>An Index-Flood Statistical Model for Hydrological Drought Assessment</title><title>Water (Basel)</title><description>Modelling of hydrological extremes and drought modelling in particular has received much attention over recent decades. The main aim of this study is to apply a statistical model for drought estimation (in this case deficit volume) using extreme value theory and the index-flood method and to reduce the uncertainties in estimation of drought event return levels. Deficit volumes for 133 catchments in the Czech Republic (1901–2015) were simulated by hydrological model BILAN. The validation of severity, intensity and length of simulated drought events revealed good match with the available observed data. To estimate return levels of the deficit volumes, it is assumed (in accord with the index-flood method), that the deficit volumes within a homogeneous region are identically distributed after scaling with a site-specific factor. The parameters of the scaled regional distribution are estimated using L-moments. The goodness-of-fit of the statistical model is assessed by Anderson–Darling test. For the estimation of critical values, sampling methods allowing for handling of years without drought were used. It is shown, that the index-flood model with a Generalized Pareto distribution performs well and substantially reduces the uncertainty related to the estimation of the shape parameter and of the large deficit volume quantiles.</description><subject>Altitude</subject><subject>Analysis</subject><subject>Book publishing</subject><subject>Catchments</subject><subject>Climate change</subject><subject>Drought</subject><subject>Extreme value theory</subject><subject>Floods</subject><subject>Goodness of fit</subject><subject>Hydrologic models</subject><subject>Hydrology</subject><subject>Mathematical models</subject><subject>Precipitation</subject><subject>Rain</subject><subject>Runoff</subject><subject>Sampling methods</subject><subject>Statistical models</subject><subject>Stream flow</subject><subject>Time series</subject><subject>Uncertainty</subject><subject>Water shortages</subject><subject>Weather</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNUE1LAzEQDaJgqT34DxY8ediaZLJNclxaawsVD-o5hHzULdtNTVK0_97VFXHmMI_Hm5nHQ-ia4CmAxHcfhGJGKIEzNKKYQ8kYI-f_8CWapLTDfTEpRIVHaFF3xbqz7rNctiHY4jnr3KTcGN0Wj8G6tvAhFquTjaEN2x96EcNx-5aLOiWX0t51-QpdeN0mN_mdY_S6vH-Zr8rN08N6Xm9KA0ByyZyXmDtrseczDcIDB-M0ppURHLCeAaEMqJWMCuCGMQpWC--NrDQVzMAY3Qx3DzG8H13KaheOsetfKso5w5UgrOpV00G11a1TTedDjtr0bd2-MaFzvun5mktCJeO9hzG6HRZMDClF59UhNnsdT4pg9R2s-gsWvgACvWg8</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Strnad, Filip</creator><creator>Moravec, Vojtěch</creator><creator>Markonis, Yannis</creator><creator>Máca, Petr</creator><creator>Masner, Jan</creator><creator>Stočes, Michal</creator><creator>Hanel, Martin</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-4593-2306</orcidid><orcidid>https://orcid.org/0000-0003-4669-2869</orcidid><orcidid>https://orcid.org/0000-0001-8317-6711</orcidid><orcidid>https://orcid.org/0000-0003-0144-8969</orcidid><orcidid>https://orcid.org/0000-0002-4972-3993</orcidid><orcidid>https://orcid.org/0000-0003-0358-9837</orcidid></search><sort><creationdate>20200401</creationdate><title>An Index-Flood Statistical Model for Hydrological Drought Assessment</title><author>Strnad, Filip ; Moravec, Vojtěch ; Markonis, Yannis ; Máca, Petr ; Masner, Jan ; Stočes, Michal ; Hanel, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-4ef907edd0f76a38f373cea025c8730a6312432d942837c4423da8ffc95a284c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Altitude</topic><topic>Analysis</topic><topic>Book publishing</topic><topic>Catchments</topic><topic>Climate change</topic><topic>Drought</topic><topic>Extreme value theory</topic><topic>Floods</topic><topic>Goodness of fit</topic><topic>Hydrologic models</topic><topic>Hydrology</topic><topic>Mathematical models</topic><topic>Precipitation</topic><topic>Rain</topic><topic>Runoff</topic><topic>Sampling methods</topic><topic>Statistical models</topic><topic>Stream flow</topic><topic>Time series</topic><topic>Uncertainty</topic><topic>Water shortages</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Strnad, Filip</creatorcontrib><creatorcontrib>Moravec, Vojtěch</creatorcontrib><creatorcontrib>Markonis, Yannis</creatorcontrib><creatorcontrib>Máca, Petr</creatorcontrib><creatorcontrib>Masner, Jan</creatorcontrib><creatorcontrib>Stočes, Michal</creatorcontrib><creatorcontrib>Hanel, Martin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Strnad, Filip</au><au>Moravec, Vojtěch</au><au>Markonis, Yannis</au><au>Máca, Petr</au><au>Masner, Jan</au><au>Stočes, Michal</au><au>Hanel, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Index-Flood Statistical Model for Hydrological Drought Assessment</atitle><jtitle>Water (Basel)</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>12</volume><issue>4</issue><spage>1213</spage><pages>1213-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>Modelling of hydrological extremes and drought modelling in particular has received much attention over recent decades. The main aim of this study is to apply a statistical model for drought estimation (in this case deficit volume) using extreme value theory and the index-flood method and to reduce the uncertainties in estimation of drought event return levels. Deficit volumes for 133 catchments in the Czech Republic (1901–2015) were simulated by hydrological model BILAN. The validation of severity, intensity and length of simulated drought events revealed good match with the available observed data. To estimate return levels of the deficit volumes, it is assumed (in accord with the index-flood method), that the deficit volumes within a homogeneous region are identically distributed after scaling with a site-specific factor. The parameters of the scaled regional distribution are estimated using L-moments. The goodness-of-fit of the statistical model is assessed by Anderson–Darling test. For the estimation of critical values, sampling methods allowing for handling of years without drought were used. It is shown, that the index-flood model with a Generalized Pareto distribution performs well and substantially reduces the uncertainty related to the estimation of the shape parameter and of the large deficit volume quantiles.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w12041213</doi><orcidid>https://orcid.org/0000-0003-4593-2306</orcidid><orcidid>https://orcid.org/0000-0003-4669-2869</orcidid><orcidid>https://orcid.org/0000-0001-8317-6711</orcidid><orcidid>https://orcid.org/0000-0003-0144-8969</orcidid><orcidid>https://orcid.org/0000-0002-4972-3993</orcidid><orcidid>https://orcid.org/0000-0003-0358-9837</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4441 |
ispartof | Water (Basel), 2020-04, Vol.12 (4), p.1213 |
issn | 2073-4441 2073-4441 |
language | eng |
recordid | cdi_proquest_journals_2774058145 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Altitude Analysis Book publishing Catchments Climate change Drought Extreme value theory Floods Goodness of fit Hydrologic models Hydrology Mathematical models Precipitation Rain Runoff Sampling methods Statistical models Stream flow Time series Uncertainty Water shortages Weather |
title | An Index-Flood Statistical Model for Hydrological Drought Assessment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A50%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Index-Flood%20Statistical%20Model%20for%20Hydrological%20Drought%20Assessment&rft.jtitle=Water%20(Basel)&rft.au=Strnad,%20Filip&rft.date=2020-04-01&rft.volume=12&rft.issue=4&rft.spage=1213&rft.pages=1213-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w12041213&rft_dat=%3Cgale_proqu%3EA791294737%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774058145&rft_id=info:pmid/&rft_galeid=A791294737&rfr_iscdi=true |