Plasma-Tailored Heterostructured Ni-Ni3N Nanosheets for Enhanced Overall Water Splitting

Heterostructured frameworks have received considerable research interest because of the superior integrity of different components and hence favorable electrocatalytic behavior. Currently, Ni-Ni 3 N-based heterostructures are regarded as one of the most essential candidates for electrocatalytic wate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2023-03, Vol.52 (3), p.1740-1748
Hauptverfasser: Wang, Xi, Qiao, Fengyu, Sun, Chao, Zhu, Jipeng, Ouyang, Bo, Kan, Erjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1748
container_issue 3
container_start_page 1740
container_title Journal of electronic materials
container_volume 52
creator Wang, Xi
Qiao, Fengyu
Sun, Chao
Zhu, Jipeng
Ouyang, Bo
Kan, Erjun
description Heterostructured frameworks have received considerable research interest because of the superior integrity of different components and hence favorable electrocatalytic behavior. Currently, Ni-Ni 3 N-based heterostructures are regarded as one of the most essential candidates for electrocatalytic water splitting. However, most reported heterostructures were achieved based on a thermal technique, leading to restricted heterostructured components for electrochemical behavior. Here, we have provided a facile plasma strategy to modulate hierarchical Ni-Ni 3 N nanostructures (hNiN) for optimized water splitting. By controlling the plasma processing duration, hNiN-based nano-frameworks have delivered maximized activity in hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The hNiN-300 can deliver a potential of 150 mV with the current of 10 mA cm −2 ( η 10 ) of HER, while the hNiN-30 exhibits the best OER catalytic activity with the current density of 167 mV at 10 mA cm −2 ( η 10 ). Also, the hNiN have excellent cyclic performances with little activity degradation after cycling. Based on experimental characterizations and computational analysis, the good water splitting behavior of hNiN can be attributed to the heterostructural formation between Ni 3 N and Ni. Such work can provide a novel pathway to easily modulate nitride-based heterostructures for superior electrochemical water splitting. Graphical Abstract Plasma strategy can easily modulate hierarchical Ni-Ni 3 N heterostructures for optimized electrocatalytic water splitting.
doi_str_mv 10.1007/s11664-022-10150-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2773996570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2773996570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-721b9099bf52670a703d5a75bd5010d2761bbbe2b8268955f6e3f3988cffd0793</originalsourceid><addsrcrecordid>eNp9kNFKwzAUhoMoOKcv4FXB62hOsiTNpYzphFEFJ-4upG2ydXTtTDLBtzezgndeBU7-7z-cD6FrILdAiLwLAEJMMKEUAwFOsDxBI-AThiEXq1M0IkwA5pTxc3QRwpakEOQwQquX1oSdwUvTtL23dTa30fo-RH-o4uE4KBpcNKzICtP1YWNtDJnrfTbrNqar0v_zp_WmbbN3k8Dsdd82MTbd-hKdOdMGe_X7jtHbw2w5nePF8-PT9H6BKwYqYkmhVESp0nEqJDGSsJobycuaEyA1lQLKsrS0zKnIFedOWOaYyvPKuZpIxcboZujd-_7jYEPU2_7gu7RSUymZUoKnzjGiQ6pKtwVvnd77Zmf8lwaijwb1YFAng_rHoJYJYgMUUrhbW_9X_Q_1DbRlcyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773996570</pqid></control><display><type>article</type><title>Plasma-Tailored Heterostructured Ni-Ni3N Nanosheets for Enhanced Overall Water Splitting</title><source>SpringerLink Journals</source><creator>Wang, Xi ; Qiao, Fengyu ; Sun, Chao ; Zhu, Jipeng ; Ouyang, Bo ; Kan, Erjun</creator><creatorcontrib>Wang, Xi ; Qiao, Fengyu ; Sun, Chao ; Zhu, Jipeng ; Ouyang, Bo ; Kan, Erjun</creatorcontrib><description>Heterostructured frameworks have received considerable research interest because of the superior integrity of different components and hence favorable electrocatalytic behavior. Currently, Ni-Ni 3 N-based heterostructures are regarded as one of the most essential candidates for electrocatalytic water splitting. However, most reported heterostructures were achieved based on a thermal technique, leading to restricted heterostructured components for electrochemical behavior. Here, we have provided a facile plasma strategy to modulate hierarchical Ni-Ni 3 N nanostructures (hNiN) for optimized water splitting. By controlling the plasma processing duration, hNiN-based nano-frameworks have delivered maximized activity in hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The hNiN-300 can deliver a potential of 150 mV with the current of 10 mA cm −2 ( η 10 ) of HER, while the hNiN-30 exhibits the best OER catalytic activity with the current density of 167 mV at 10 mA cm −2 ( η 10 ). Also, the hNiN have excellent cyclic performances with little activity degradation after cycling. Based on experimental characterizations and computational analysis, the good water splitting behavior of hNiN can be attributed to the heterostructural formation between Ni 3 N and Ni. Such work can provide a novel pathway to easily modulate nitride-based heterostructures for superior electrochemical water splitting. Graphical Abstract Plasma strategy can easily modulate hierarchical Ni-Ni 3 N heterostructures for optimized electrocatalytic water splitting.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-022-10150-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Advanced Metal Ion Batteries ; Catalytic activity ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Electrochemical analysis ; Electronics and Microelectronics ; Heterostructures ; Hydrogen evolution reactions ; Instrumentation ; Materials Science ; Nanosheets ; Optical and Electronic Materials ; Oxygen evolution reactions ; Plasma ; Plasma processing ; Solid State Physics ; Topical Collection: Advanced Metal Ion Batteries ; Water splitting</subject><ispartof>Journal of electronic materials, 2023-03, Vol.52 (3), p.1740-1748</ispartof><rights>The Minerals, Metals &amp; Materials Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-721b9099bf52670a703d5a75bd5010d2761bbbe2b8268955f6e3f3988cffd0793</citedby><cites>FETCH-LOGICAL-c319t-721b9099bf52670a703d5a75bd5010d2761bbbe2b8268955f6e3f3988cffd0793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-022-10150-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-022-10150-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Wang, Xi</creatorcontrib><creatorcontrib>Qiao, Fengyu</creatorcontrib><creatorcontrib>Sun, Chao</creatorcontrib><creatorcontrib>Zhu, Jipeng</creatorcontrib><creatorcontrib>Ouyang, Bo</creatorcontrib><creatorcontrib>Kan, Erjun</creatorcontrib><title>Plasma-Tailored Heterostructured Ni-Ni3N Nanosheets for Enhanced Overall Water Splitting</title><title>Journal of electronic materials</title><addtitle>J. Electron. Mater</addtitle><description>Heterostructured frameworks have received considerable research interest because of the superior integrity of different components and hence favorable electrocatalytic behavior. Currently, Ni-Ni 3 N-based heterostructures are regarded as one of the most essential candidates for electrocatalytic water splitting. However, most reported heterostructures were achieved based on a thermal technique, leading to restricted heterostructured components for electrochemical behavior. Here, we have provided a facile plasma strategy to modulate hierarchical Ni-Ni 3 N nanostructures (hNiN) for optimized water splitting. By controlling the plasma processing duration, hNiN-based nano-frameworks have delivered maximized activity in hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The hNiN-300 can deliver a potential of 150 mV with the current of 10 mA cm −2 ( η 10 ) of HER, while the hNiN-30 exhibits the best OER catalytic activity with the current density of 167 mV at 10 mA cm −2 ( η 10 ). Also, the hNiN have excellent cyclic performances with little activity degradation after cycling. Based on experimental characterizations and computational analysis, the good water splitting behavior of hNiN can be attributed to the heterostructural formation between Ni 3 N and Ni. Such work can provide a novel pathway to easily modulate nitride-based heterostructures for superior electrochemical water splitting. Graphical Abstract Plasma strategy can easily modulate hierarchical Ni-Ni 3 N heterostructures for optimized electrocatalytic water splitting.</description><subject>Advanced Metal Ion Batteries</subject><subject>Catalytic activity</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Electrochemical analysis</subject><subject>Electronics and Microelectronics</subject><subject>Heterostructures</subject><subject>Hydrogen evolution reactions</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Nanosheets</subject><subject>Optical and Electronic Materials</subject><subject>Oxygen evolution reactions</subject><subject>Plasma</subject><subject>Plasma processing</subject><subject>Solid State Physics</subject><subject>Topical Collection: Advanced Metal Ion Batteries</subject><subject>Water splitting</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kNFKwzAUhoMoOKcv4FXB62hOsiTNpYzphFEFJ-4upG2ydXTtTDLBtzezgndeBU7-7z-cD6FrILdAiLwLAEJMMKEUAwFOsDxBI-AThiEXq1M0IkwA5pTxc3QRwpakEOQwQquX1oSdwUvTtL23dTa30fo-RH-o4uE4KBpcNKzICtP1YWNtDJnrfTbrNqar0v_zp_WmbbN3k8Dsdd82MTbd-hKdOdMGe_X7jtHbw2w5nePF8-PT9H6BKwYqYkmhVESp0nEqJDGSsJobycuaEyA1lQLKsrS0zKnIFedOWOaYyvPKuZpIxcboZujd-_7jYEPU2_7gu7RSUymZUoKnzjGiQ6pKtwVvnd77Zmf8lwaijwb1YFAng_rHoJYJYgMUUrhbW_9X_Q_1DbRlcyg</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Wang, Xi</creator><creator>Qiao, Fengyu</creator><creator>Sun, Chao</creator><creator>Zhu, Jipeng</creator><creator>Ouyang, Bo</creator><creator>Kan, Erjun</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20230301</creationdate><title>Plasma-Tailored Heterostructured Ni-Ni3N Nanosheets for Enhanced Overall Water Splitting</title><author>Wang, Xi ; Qiao, Fengyu ; Sun, Chao ; Zhu, Jipeng ; Ouyang, Bo ; Kan, Erjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-721b9099bf52670a703d5a75bd5010d2761bbbe2b8268955f6e3f3988cffd0793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Advanced Metal Ion Batteries</topic><topic>Catalytic activity</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Electrochemical analysis</topic><topic>Electronics and Microelectronics</topic><topic>Heterostructures</topic><topic>Hydrogen evolution reactions</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Nanosheets</topic><topic>Optical and Electronic Materials</topic><topic>Oxygen evolution reactions</topic><topic>Plasma</topic><topic>Plasma processing</topic><topic>Solid State Physics</topic><topic>Topical Collection: Advanced Metal Ion Batteries</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xi</creatorcontrib><creatorcontrib>Qiao, Fengyu</creatorcontrib><creatorcontrib>Sun, Chao</creatorcontrib><creatorcontrib>Zhu, Jipeng</creatorcontrib><creatorcontrib>Ouyang, Bo</creatorcontrib><creatorcontrib>Kan, Erjun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xi</au><au>Qiao, Fengyu</au><au>Sun, Chao</au><au>Zhu, Jipeng</au><au>Ouyang, Bo</au><au>Kan, Erjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasma-Tailored Heterostructured Ni-Ni3N Nanosheets for Enhanced Overall Water Splitting</atitle><jtitle>Journal of electronic materials</jtitle><stitle>J. Electron. Mater</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>52</volume><issue>3</issue><spage>1740</spage><epage>1748</epage><pages>1740-1748</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>Heterostructured frameworks have received considerable research interest because of the superior integrity of different components and hence favorable electrocatalytic behavior. Currently, Ni-Ni 3 N-based heterostructures are regarded as one of the most essential candidates for electrocatalytic water splitting. However, most reported heterostructures were achieved based on a thermal technique, leading to restricted heterostructured components for electrochemical behavior. Here, we have provided a facile plasma strategy to modulate hierarchical Ni-Ni 3 N nanostructures (hNiN) for optimized water splitting. By controlling the plasma processing duration, hNiN-based nano-frameworks have delivered maximized activity in hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The hNiN-300 can deliver a potential of 150 mV with the current of 10 mA cm −2 ( η 10 ) of HER, while the hNiN-30 exhibits the best OER catalytic activity with the current density of 167 mV at 10 mA cm −2 ( η 10 ). Also, the hNiN have excellent cyclic performances with little activity degradation after cycling. Based on experimental characterizations and computational analysis, the good water splitting behavior of hNiN can be attributed to the heterostructural formation between Ni 3 N and Ni. Such work can provide a novel pathway to easily modulate nitride-based heterostructures for superior electrochemical water splitting. Graphical Abstract Plasma strategy can easily modulate hierarchical Ni-Ni 3 N heterostructures for optimized electrocatalytic water splitting.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-022-10150-7</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2023-03, Vol.52 (3), p.1740-1748
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2773996570
source SpringerLink Journals
subjects Advanced Metal Ion Batteries
Catalytic activity
Characterization and Evaluation of Materials
Chemistry and Materials Science
Electrochemical analysis
Electronics and Microelectronics
Heterostructures
Hydrogen evolution reactions
Instrumentation
Materials Science
Nanosheets
Optical and Electronic Materials
Oxygen evolution reactions
Plasma
Plasma processing
Solid State Physics
Topical Collection: Advanced Metal Ion Batteries
Water splitting
title Plasma-Tailored Heterostructured Ni-Ni3N Nanosheets for Enhanced Overall Water Splitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A06%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasma-Tailored%20Heterostructured%20Ni-Ni3N%20Nanosheets%20for%20Enhanced%20Overall%20Water%20Splitting&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Wang,%20Xi&rft.date=2023-03-01&rft.volume=52&rft.issue=3&rft.spage=1740&rft.epage=1748&rft.pages=1740-1748&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-022-10150-7&rft_dat=%3Cproquest_cross%3E2773996570%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2773996570&rft_id=info:pmid/&rfr_iscdi=true