A new integer programming formulation of the graphical traveling salesman problem

In the Traveling Salesman Problem (TSP), a salesman wants to visit a set of cities and return home. There is a cost c ij of traveling from city i to city j , which is the same in either direction for the Symmetric TSP. The objective is to visit each city exactly once, minimizing total travel costs....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming 2023-02, Vol.197 (2), p.877-902
Hauptverfasser: Carr, Robert, Ravi, R., Simonetti, Neil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 902
container_issue 2
container_start_page 877
container_title Mathematical programming
container_volume 197
creator Carr, Robert
Ravi, R.
Simonetti, Neil
description In the Traveling Salesman Problem (TSP), a salesman wants to visit a set of cities and return home. There is a cost c ij of traveling from city i to city j , which is the same in either direction for the Symmetric TSP. The objective is to visit each city exactly once, minimizing total travel costs. In the Graphical TSP, a city may be visited more than once, which may be necessary on a sparse graph. We present a new integer programming formulation for the Graphical TSP requiring only two classes of polynomial-sized constraints while addressing an open question proposed by Denis Naddef. We generalize one of these classes, and present promising preliminary computational results.
doi_str_mv 10.1007/s10107-022-01849-w
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2773850816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A736144631</galeid><sourcerecordid>A736144631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-717c00b6c7ee2ffcf8bd5865123a8317a916c2e6526ccaeef44a6d874a39321a3</originalsourceid><addsrcrecordid>eNp9kE1LKzEUhoMoWD_-gKsB16PnJJkkXRbRqyCIoOuQpid1ZCZTk6nFf39TR3AnWQRy3ifn5WHsAuEKAfR1RkDQNXBeAxo5r3cHbIZSqFoqqQ7ZDIA3daMQjtlJzu8AgMKYGXteVJF2VRtHWlOqNmlYJ9f3bVxXYUj9tnNjO8RqCNX4RlWZbd5a77pqTO6Tun0su45y7-KeXXbUn7Gj4LpM5z_3KXu9u325ua8fn_493Cweay8aM9YatQdYKq-JeAg-mOWqMapBLpwRqN0cleekGq68d0RBSqdWRksn5oKjE6fscvq37P3YUh7t-7BNsay0XGthGjCoSupqSq1LTdvGMJTmvpwV9a0fIoW2vC-0UCilElgAPgE-DTknCnaT2t6lL4tg967t5NoW1_bbtd0VSExQLuFYRP52-YP6D6kQgoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773850816</pqid></control><display><type>article</type><title>A new integer programming formulation of the graphical traveling salesman problem</title><source>EBSCOhost Business Source Complete</source><source>Springer Nature - Complete Springer Journals</source><creator>Carr, Robert ; Ravi, R. ; Simonetti, Neil</creator><creatorcontrib>Carr, Robert ; Ravi, R. ; Simonetti, Neil</creatorcontrib><description>In the Traveling Salesman Problem (TSP), a salesman wants to visit a set of cities and return home. There is a cost c ij of traveling from city i to city j , which is the same in either direction for the Symmetric TSP. The objective is to visit each city exactly once, minimizing total travel costs. In the Graphical TSP, a city may be visited more than once, which may be necessary on a sparse graph. We present a new integer programming formulation for the Graphical TSP requiring only two classes of polynomial-sized constraints while addressing an open question proposed by Denis Naddef. We generalize one of these classes, and present promising preliminary computational results.</description><identifier>ISSN: 0025-5610</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/s10107-022-01849-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Calculus of Variations and Optimal Control; Optimization ; Combinatorics ; Full Length Paper ; Integer programming ; Management science ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Numerical Analysis ; Polynomials ; Theoretical ; Traveling salesman problem</subject><ispartof>Mathematical programming, 2023-02, Vol.197 (2), p.877-902</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2022</rights><rights>COPYRIGHT 2023 Springer</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-717c00b6c7ee2ffcf8bd5865123a8317a916c2e6526ccaeef44a6d874a39321a3</citedby><cites>FETCH-LOGICAL-c358t-717c00b6c7ee2ffcf8bd5865123a8317a916c2e6526ccaeef44a6d874a39321a3</cites><orcidid>0000-0001-6128-712X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10107-022-01849-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10107-022-01849-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Carr, Robert</creatorcontrib><creatorcontrib>Ravi, R.</creatorcontrib><creatorcontrib>Simonetti, Neil</creatorcontrib><title>A new integer programming formulation of the graphical traveling salesman problem</title><title>Mathematical programming</title><addtitle>Math. Program</addtitle><description>In the Traveling Salesman Problem (TSP), a salesman wants to visit a set of cities and return home. There is a cost c ij of traveling from city i to city j , which is the same in either direction for the Symmetric TSP. The objective is to visit each city exactly once, minimizing total travel costs. In the Graphical TSP, a city may be visited more than once, which may be necessary on a sparse graph. We present a new integer programming formulation for the Graphical TSP requiring only two classes of polynomial-sized constraints while addressing an open question proposed by Denis Naddef. We generalize one of these classes, and present promising preliminary computational results.</description><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Combinatorics</subject><subject>Full Length Paper</subject><subject>Integer programming</subject><subject>Management science</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Numerical Analysis</subject><subject>Polynomials</subject><subject>Theoretical</subject><subject>Traveling salesman problem</subject><issn>0025-5610</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LKzEUhoMoWD_-gKsB16PnJJkkXRbRqyCIoOuQpid1ZCZTk6nFf39TR3AnWQRy3ifn5WHsAuEKAfR1RkDQNXBeAxo5r3cHbIZSqFoqqQ7ZDIA3daMQjtlJzu8AgMKYGXteVJF2VRtHWlOqNmlYJ9f3bVxXYUj9tnNjO8RqCNX4RlWZbd5a77pqTO6Tun0su45y7-KeXXbUn7Gj4LpM5z_3KXu9u325ua8fn_493Cweay8aM9YatQdYKq-JeAg-mOWqMapBLpwRqN0cleekGq68d0RBSqdWRksn5oKjE6fscvq37P3YUh7t-7BNsay0XGthGjCoSupqSq1LTdvGMJTmvpwV9a0fIoW2vC-0UCilElgAPgE-DTknCnaT2t6lL4tg967t5NoW1_bbtd0VSExQLuFYRP52-YP6D6kQgoA</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Carr, Robert</creator><creator>Ravi, R.</creator><creator>Simonetti, Neil</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6128-712X</orcidid></search><sort><creationdate>20230201</creationdate><title>A new integer programming formulation of the graphical traveling salesman problem</title><author>Carr, Robert ; Ravi, R. ; Simonetti, Neil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-717c00b6c7ee2ffcf8bd5865123a8317a916c2e6526ccaeef44a6d874a39321a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Combinatorics</topic><topic>Full Length Paper</topic><topic>Integer programming</topic><topic>Management science</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Numerical Analysis</topic><topic>Polynomials</topic><topic>Theoretical</topic><topic>Traveling salesman problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carr, Robert</creatorcontrib><creatorcontrib>Ravi, R.</creatorcontrib><creatorcontrib>Simonetti, Neil</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carr, Robert</au><au>Ravi, R.</au><au>Simonetti, Neil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new integer programming formulation of the graphical traveling salesman problem</atitle><jtitle>Mathematical programming</jtitle><stitle>Math. Program</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>197</volume><issue>2</issue><spage>877</spage><epage>902</epage><pages>877-902</pages><issn>0025-5610</issn><eissn>1436-4646</eissn><abstract>In the Traveling Salesman Problem (TSP), a salesman wants to visit a set of cities and return home. There is a cost c ij of traveling from city i to city j , which is the same in either direction for the Symmetric TSP. The objective is to visit each city exactly once, minimizing total travel costs. In the Graphical TSP, a city may be visited more than once, which may be necessary on a sparse graph. We present a new integer programming formulation for the Graphical TSP requiring only two classes of polynomial-sized constraints while addressing an open question proposed by Denis Naddef. We generalize one of these classes, and present promising preliminary computational results.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10107-022-01849-w</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0001-6128-712X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0025-5610
ispartof Mathematical programming, 2023-02, Vol.197 (2), p.877-902
issn 0025-5610
1436-4646
language eng
recordid cdi_proquest_journals_2773850816
source EBSCOhost Business Source Complete; Springer Nature - Complete Springer Journals
subjects Calculus of Variations and Optimal Control
Optimization
Combinatorics
Full Length Paper
Integer programming
Management science
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics of Computing
Numerical Analysis
Polynomials
Theoretical
Traveling salesman problem
title A new integer programming formulation of the graphical traveling salesman problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A10%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20integer%20programming%20formulation%20of%20the%20graphical%20traveling%20salesman%20problem&rft.jtitle=Mathematical%20programming&rft.au=Carr,%20Robert&rft.date=2023-02-01&rft.volume=197&rft.issue=2&rft.spage=877&rft.epage=902&rft.pages=877-902&rft.issn=0025-5610&rft.eissn=1436-4646&rft_id=info:doi/10.1007/s10107-022-01849-w&rft_dat=%3Cgale_proqu%3EA736144631%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2773850816&rft_id=info:pmid/&rft_galeid=A736144631&rfr_iscdi=true