Proximity bounds for random integer programs
We study proximity bounds within a natural model of random integer programs of the type max c ⊤ x : A x = b , x ∈ Z ≥ 0 , where A ∈ Z m × n is of rank m , b ∈ Z m and c ∈ Z n . In particular, we seek bounds for proximity in terms of the parameter Δ ( A ) , which is the square root of the determinant...
Gespeichert in:
Veröffentlicht in: | Mathematical programming 2023-02, Vol.197 (2), p.1201-1219 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study proximity bounds within a natural model of random integer programs of the type
max
c
⊤
x
:
A
x
=
b
,
x
∈
Z
≥
0
, where
A
∈
Z
m
×
n
is of rank
m
,
b
∈
Z
m
and
c
∈
Z
n
. In particular, we seek bounds for proximity in terms of the parameter
Δ
(
A
)
, which is the square root of the determinant of the Gram matrix
A
A
⊤
of
A
. We prove that, up to constants depending on
n
and
m
, the proximity is “generally” bounded by
Δ
(
A
)
1
/
(
n
-
m
)
, which is significantly better than the best deterministic bounds which are, again up to dimension constants, linear in
Δ
(
A
)
. |
---|---|
ISSN: | 0025-5610 1436-4646 |
DOI: | 10.1007/s10107-022-01786-8 |