Proximity bounds for random integer programs

We study proximity bounds within a natural model of random integer programs of the type max c ⊤ x : A x = b , x ∈ Z ≥ 0 , where A ∈ Z m × n is of rank m , b ∈ Z m and c ∈ Z n . In particular, we seek bounds for proximity in terms of the parameter Δ ( A ) , which is the square root of the determinant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming 2023-02, Vol.197 (2), p.1201-1219
Hauptverfasser: Celaya, Marcel, Henk, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study proximity bounds within a natural model of random integer programs of the type max c ⊤ x : A x = b , x ∈ Z ≥ 0 , where A ∈ Z m × n is of rank m , b ∈ Z m and c ∈ Z n . In particular, we seek bounds for proximity in terms of the parameter Δ ( A ) , which is the square root of the determinant of the Gram matrix A A ⊤ of A . We prove that, up to constants depending on n and m , the proximity is “generally” bounded by Δ ( A ) 1 / ( n - m ) , which is significantly better than the best deterministic bounds which are, again up to dimension constants, linear in Δ ( A ) .
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-022-01786-8