A LLS operator based S‐I WT de‐noising algorithm applied in EDXRF

An improved shift‐invariant wavelet (S‐I WT) de‐noising algorithm based on LLS operator is proposed for high‐resolution energy dispersive X‐ray fluorescence. Sym8 is chosen as the wavelet basis function and performed noise reduction on the analog signal. Comparison of the de‐noising effect of S‐I WT...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:X-ray spectrometry 2023-01, Vol.52 (1), p.13-21
Hauptverfasser: Li, Fei, Tang, Chuanfeng, Li, Hui, Ge, Liangquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21
container_issue 1
container_start_page 13
container_title X-ray spectrometry
container_volume 52
creator Li, Fei
Tang, Chuanfeng
Li, Hui
Ge, Liangquan
description An improved shift‐invariant wavelet (S‐I WT) de‐noising algorithm based on LLS operator is proposed for high‐resolution energy dispersive X‐ray fluorescence. Sym8 is chosen as the wavelet basis function and performed noise reduction on the analog signal. Comparison of the de‐noising effect of S‐I WT, improved WT and LLS S‐I WT (where LLS is the log square root operator) method are quantitatively evaluated by using evaluation criteria signal‐to‐noise‐ratio (SNR), root mean square error and Pearson correlation coefficient. Meanwhile, a new evaluation criterion of de‐noising effect, called peak area relative difference, is also proposed to evaluate the counting deviation. The results show that the LLS‐SI WT is simple and reliable, can effectively reduce pseudo‐Gibbs artificial signals and statistical fluctuation. Besides, this method simplifies the calculation, reduces the running time and improves the running efficiency. The LLS‐SI WT is also applied to reduce the noise after adding strong noise to the signal, the SNR has been improved from 14.0040 to 14.7552, and most of the characteristic peak information retains to the greatest extent.
doi_str_mv 10.1002/xrs.3159
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2773764359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2773764359</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2939-529564e7cb1de69b7c55cc9d9e070a81c155fee788c54d05b74c27c61c0cafb83</originalsourceid><addsrcrecordid>eNp10EFLwzAUwPEgCs4p-BECXrx0vrRJ0xzH3HRQELaJu4U0TWdG19RkQ3fzI_gZ_SR2zqun9w4_3oM_QtcEBgQgvvvwYZAQJk5Qj4DgEWWJOEU9ACqiLKbpOboIYQ1AgBDRQ-MhzvM5dq3xaus8LlQwJZ5_f35N8csCl6bbGmeDbVZY1Svn7fZ1g1Xb1rZztsHj--VsconOKlUHc_U3--h5Ml6MHqP86WE6GuaRjkUiIhYLllLDdUFKk4qCa8a0FqUwwEFlRBPGKmN4lmlGS2AFpzrmOiUatKqKLOmjm-Pd1ru3nQlbuXY733QvZcx5wlOaMNGp26PS3oXgTSVbbzfK7yUBeYgku0jyEKmj0ZG-29rs_3VyOZv_-h-X1Ggx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773764359</pqid></control><display><type>article</type><title>A LLS operator based S‐I WT de‐noising algorithm applied in EDXRF</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Fei ; Tang, Chuanfeng ; Li, Hui ; Ge, Liangquan</creator><creatorcontrib>Li, Fei ; Tang, Chuanfeng ; Li, Hui ; Ge, Liangquan</creatorcontrib><description>An improved shift‐invariant wavelet (S‐I WT) de‐noising algorithm based on LLS operator is proposed for high‐resolution energy dispersive X‐ray fluorescence. Sym8 is chosen as the wavelet basis function and performed noise reduction on the analog signal. Comparison of the de‐noising effect of S‐I WT, improved WT and LLS S‐I WT (where LLS is the log square root operator) method are quantitatively evaluated by using evaluation criteria signal‐to‐noise‐ratio (SNR), root mean square error and Pearson correlation coefficient. Meanwhile, a new evaluation criterion of de‐noising effect, called peak area relative difference, is also proposed to evaluate the counting deviation. The results show that the LLS‐SI WT is simple and reliable, can effectively reduce pseudo‐Gibbs artificial signals and statistical fluctuation. Besides, this method simplifies the calculation, reduces the running time and improves the running efficiency. The LLS‐SI WT is also applied to reduce the noise after adding strong noise to the signal, the SNR has been improved from 14.0040 to 14.7552, and most of the characteristic peak information retains to the greatest extent.</description><identifier>ISSN: 0049-8246</identifier><identifier>EISSN: 1097-4539</identifier><identifier>DOI: 10.1002/xrs.3159</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; Basis functions ; Correlation coefficient ; Correlation coefficients ; de‐noising ; EDXRF ; LLS operator ; Mathematical analysis ; Noise reduction ; S‐I WT</subject><ispartof>X-ray spectrometry, 2023-01, Vol.52 (1), p.13-21</ispartof><rights>2020 John Wiley &amp; Sons Ltd</rights><rights>2023 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2939-529564e7cb1de69b7c55cc9d9e070a81c155fee788c54d05b74c27c61c0cafb83</citedby><cites>FETCH-LOGICAL-c2939-529564e7cb1de69b7c55cc9d9e070a81c155fee788c54d05b74c27c61c0cafb83</cites><orcidid>0000-0001-7652-0473</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fxrs.3159$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fxrs.3159$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Li, Fei</creatorcontrib><creatorcontrib>Tang, Chuanfeng</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Ge, Liangquan</creatorcontrib><title>A LLS operator based S‐I WT de‐noising algorithm applied in EDXRF</title><title>X-ray spectrometry</title><description>An improved shift‐invariant wavelet (S‐I WT) de‐noising algorithm based on LLS operator is proposed for high‐resolution energy dispersive X‐ray fluorescence. Sym8 is chosen as the wavelet basis function and performed noise reduction on the analog signal. Comparison of the de‐noising effect of S‐I WT, improved WT and LLS S‐I WT (where LLS is the log square root operator) method are quantitatively evaluated by using evaluation criteria signal‐to‐noise‐ratio (SNR), root mean square error and Pearson correlation coefficient. Meanwhile, a new evaluation criterion of de‐noising effect, called peak area relative difference, is also proposed to evaluate the counting deviation. The results show that the LLS‐SI WT is simple and reliable, can effectively reduce pseudo‐Gibbs artificial signals and statistical fluctuation. Besides, this method simplifies the calculation, reduces the running time and improves the running efficiency. The LLS‐SI WT is also applied to reduce the noise after adding strong noise to the signal, the SNR has been improved from 14.0040 to 14.7552, and most of the characteristic peak information retains to the greatest extent.</description><subject>Algorithms</subject><subject>Basis functions</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>de‐noising</subject><subject>EDXRF</subject><subject>LLS operator</subject><subject>Mathematical analysis</subject><subject>Noise reduction</subject><subject>S‐I WT</subject><issn>0049-8246</issn><issn>1097-4539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp10EFLwzAUwPEgCs4p-BECXrx0vrRJ0xzH3HRQELaJu4U0TWdG19RkQ3fzI_gZ_SR2zqun9w4_3oM_QtcEBgQgvvvwYZAQJk5Qj4DgEWWJOEU9ACqiLKbpOboIYQ1AgBDRQ-MhzvM5dq3xaus8LlQwJZ5_f35N8csCl6bbGmeDbVZY1Svn7fZ1g1Xb1rZztsHj--VsconOKlUHc_U3--h5Ml6MHqP86WE6GuaRjkUiIhYLllLDdUFKk4qCa8a0FqUwwEFlRBPGKmN4lmlGS2AFpzrmOiUatKqKLOmjm-Pd1ru3nQlbuXY733QvZcx5wlOaMNGp26PS3oXgTSVbbzfK7yUBeYgku0jyEKmj0ZG-29rs_3VyOZv_-h-X1Ggx</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Li, Fei</creator><creator>Tang, Chuanfeng</creator><creator>Li, Hui</creator><creator>Ge, Liangquan</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7652-0473</orcidid></search><sort><creationdate>202301</creationdate><title>A LLS operator based S‐I WT de‐noising algorithm applied in EDXRF</title><author>Li, Fei ; Tang, Chuanfeng ; Li, Hui ; Ge, Liangquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2939-529564e7cb1de69b7c55cc9d9e070a81c155fee788c54d05b74c27c61c0cafb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Basis functions</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>de‐noising</topic><topic>EDXRF</topic><topic>LLS operator</topic><topic>Mathematical analysis</topic><topic>Noise reduction</topic><topic>S‐I WT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Fei</creatorcontrib><creatorcontrib>Tang, Chuanfeng</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Ge, Liangquan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>X-ray spectrometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Fei</au><au>Tang, Chuanfeng</au><au>Li, Hui</au><au>Ge, Liangquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A LLS operator based S‐I WT de‐noising algorithm applied in EDXRF</atitle><jtitle>X-ray spectrometry</jtitle><date>2023-01</date><risdate>2023</risdate><volume>52</volume><issue>1</issue><spage>13</spage><epage>21</epage><pages>13-21</pages><issn>0049-8246</issn><eissn>1097-4539</eissn><abstract>An improved shift‐invariant wavelet (S‐I WT) de‐noising algorithm based on LLS operator is proposed for high‐resolution energy dispersive X‐ray fluorescence. Sym8 is chosen as the wavelet basis function and performed noise reduction on the analog signal. Comparison of the de‐noising effect of S‐I WT, improved WT and LLS S‐I WT (where LLS is the log square root operator) method are quantitatively evaluated by using evaluation criteria signal‐to‐noise‐ratio (SNR), root mean square error and Pearson correlation coefficient. Meanwhile, a new evaluation criterion of de‐noising effect, called peak area relative difference, is also proposed to evaluate the counting deviation. The results show that the LLS‐SI WT is simple and reliable, can effectively reduce pseudo‐Gibbs artificial signals and statistical fluctuation. Besides, this method simplifies the calculation, reduces the running time and improves the running efficiency. The LLS‐SI WT is also applied to reduce the noise after adding strong noise to the signal, the SNR has been improved from 14.0040 to 14.7552, and most of the characteristic peak information retains to the greatest extent.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/xrs.3159</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7652-0473</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0049-8246
ispartof X-ray spectrometry, 2023-01, Vol.52 (1), p.13-21
issn 0049-8246
1097-4539
language eng
recordid cdi_proquest_journals_2773764359
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Basis functions
Correlation coefficient
Correlation coefficients
de‐noising
EDXRF
LLS operator
Mathematical analysis
Noise reduction
S‐I WT
title A LLS operator based S‐I WT de‐noising algorithm applied in EDXRF
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A37%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20LLS%20operator%20based%20S%E2%80%90I%20WT%20de%E2%80%90noising%20algorithm%20applied%20in%20EDXRF&rft.jtitle=X-ray%20spectrometry&rft.au=Li,%20Fei&rft.date=2023-01&rft.volume=52&rft.issue=1&rft.spage=13&rft.epage=21&rft.pages=13-21&rft.issn=0049-8246&rft.eissn=1097-4539&rft_id=info:doi/10.1002/xrs.3159&rft_dat=%3Cproquest_cross%3E2773764359%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2773764359&rft_id=info:pmid/&rfr_iscdi=true