Relationship among Extrusion Conditions, Cell Morphology, and Properties of Starch‐Based Foams—A Review

Environmental impact concern of conventional polymer foams has attracted considerable interest for the development of natural‐based polymer foams. Starch is a biopolymer that is gaining acceptability due to its renewability, availability, environmental biodegradation, and low cost. Extrusion is part...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Starch - Stärke 2023-01, Vol.75 (1-2), p.n/a
Hauptverfasser: Dircio‐Morales, Marco Antonio, Fonseca‐Florido, Heidi Andrea, Velazquez, Gonzalo, Ávila‐Orta, Carlos Alberto, Ramos‐De Valle, Luis Francisco, Hernández‐Gámez, Francisco, Rivera‐Salinas, Jorge Enrique, Soriano‐Corral, Florentino
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1-2
container_start_page
container_title Starch - Stärke
container_volume 75
creator Dircio‐Morales, Marco Antonio
Fonseca‐Florido, Heidi Andrea
Velazquez, Gonzalo
Ávila‐Orta, Carlos Alberto
Ramos‐De Valle, Luis Francisco
Hernández‐Gámez, Francisco
Rivera‐Salinas, Jorge Enrique
Soriano‐Corral, Florentino
description Environmental impact concern of conventional polymer foams has attracted considerable interest for the development of natural‐based polymer foams. Starch is a biopolymer that is gaining acceptability due to its renewability, availability, environmental biodegradation, and low cost. Extrusion is particularly desirable to produce starch‐based foams because it can produce a homogeneous mixing, high heat transfer, high pressure, reduction of the residence time, and low production costs. This review explains the transformation of starch during the foam processing and their relationship with extrusion conditions such as water content, barrel temperature, screw configuration and speed, die temperature, and die dimensions and how all these factors impact on the cell morphology, apparent density, expansion ratio, and final properties of starch‐based foams. The strategies to reduce water sensitivity are described, as well as the effect of amylose content and the addition of additives to improve the starch‐based foams performance as alternative for expanded polystyrene. The extrusion processing conditions can be controlled to obtain the desirable properties for specific applications such as cushioning, packaging, and loose‐fill, among others. Also, a brief look at the starch‐based foams trends, challenges, and perspectives are also discussed. Starch‐based foams are an alternative as a substitute for synthetic plastics. Water acts as both plasticized and foaming agent impacting on viscoelastic behavior. Rheological and morphological properties are influenced by extrusion conditions.
doi_str_mv 10.1002/star.202200103
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2773763544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2773763544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3173-dcbc63a524e488f0bc218ea57ca90e18f3efed4e0bdae5c1d3b471bb555cdaf03</originalsourceid><addsrcrecordid>eNqFkM9OwkAQhzdGExG9et7EK8XZbrd_jkhETTAawMRbs91OoVi6dbeI3HgEDz4hT2IRo0dPk8z8vpnJR8g5gy4DcC9tLU3XBdcFYMAPSIsJlzk8iJ4PSQuAh04Ewj8mJ9bOAXwReKxFXkZYyDrXpZ3lFZULXU7p9Xttlrbp0b4u0_x72qF9LAp6r00104WerjtUlil9NLpCU-doqc7ouPlAzbabjytpMaUDLRd2u_ns0RG-5bg6JUeZLCye_dQ2eRpcT_q3zvDh5q7fGzqKs4A7qUqUz6VwPfTCMINEuSxEKQIlI0AWZhwzTD2EJJUoFEt54gUsSYQQKpUZ8Da52O-tjH5doq3juV6asjkZu0HAA58Lz2tS3X1KGW2twSyuTL6QZh0ziHdC453Q-FdoA0R7YJUXuP4nHY8nvdEf-wVbDn5O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773763544</pqid></control><display><type>article</type><title>Relationship among Extrusion Conditions, Cell Morphology, and Properties of Starch‐Based Foams—A Review</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Dircio‐Morales, Marco Antonio ; Fonseca‐Florido, Heidi Andrea ; Velazquez, Gonzalo ; Ávila‐Orta, Carlos Alberto ; Ramos‐De Valle, Luis Francisco ; Hernández‐Gámez, Francisco ; Rivera‐Salinas, Jorge Enrique ; Soriano‐Corral, Florentino</creator><creatorcontrib>Dircio‐Morales, Marco Antonio ; Fonseca‐Florido, Heidi Andrea ; Velazquez, Gonzalo ; Ávila‐Orta, Carlos Alberto ; Ramos‐De Valle, Luis Francisco ; Hernández‐Gámez, Francisco ; Rivera‐Salinas, Jorge Enrique ; Soriano‐Corral, Florentino</creatorcontrib><description>Environmental impact concern of conventional polymer foams has attracted considerable interest for the development of natural‐based polymer foams. Starch is a biopolymer that is gaining acceptability due to its renewability, availability, environmental biodegradation, and low cost. Extrusion is particularly desirable to produce starch‐based foams because it can produce a homogeneous mixing, high heat transfer, high pressure, reduction of the residence time, and low production costs. This review explains the transformation of starch during the foam processing and their relationship with extrusion conditions such as water content, barrel temperature, screw configuration and speed, die temperature, and die dimensions and how all these factors impact on the cell morphology, apparent density, expansion ratio, and final properties of starch‐based foams. The strategies to reduce water sensitivity are described, as well as the effect of amylose content and the addition of additives to improve the starch‐based foams performance as alternative for expanded polystyrene. The extrusion processing conditions can be controlled to obtain the desirable properties for specific applications such as cushioning, packaging, and loose‐fill, among others. Also, a brief look at the starch‐based foams trends, challenges, and perspectives are also discussed. Starch‐based foams are an alternative as a substitute for synthetic plastics. Water acts as both plasticized and foaming agent impacting on viscoelastic behavior. Rheological and morphological properties are influenced by extrusion conditions.</description><identifier>ISSN: 0038-9056</identifier><identifier>EISSN: 1521-379X</identifier><identifier>DOI: 10.1002/star.202200103</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Additives ; Amylose ; Biodegradation ; Biopolymers ; Bulk density ; Cell morphology ; Cytology ; density ; Environmental impact ; expansion ratio ; extrusion conditions ; Extrusion rate ; Foams ; Heat transfer ; High pressure ; Moisture content ; Morphology ; Plastic foam ; Polymers ; Polystyrene ; Polystyrene resins ; Production costs ; Starch ; starch‐based foams ; Water content</subject><ispartof>Starch - Stärke, 2023-01, Vol.75 (1-2), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3173-dcbc63a524e488f0bc218ea57ca90e18f3efed4e0bdae5c1d3b471bb555cdaf03</citedby><cites>FETCH-LOGICAL-c3173-dcbc63a524e488f0bc218ea57ca90e18f3efed4e0bdae5c1d3b471bb555cdaf03</cites><orcidid>0000-0003-1901-9919 ; 0000-0002-6861-2412</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fstar.202200103$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fstar.202200103$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Dircio‐Morales, Marco Antonio</creatorcontrib><creatorcontrib>Fonseca‐Florido, Heidi Andrea</creatorcontrib><creatorcontrib>Velazquez, Gonzalo</creatorcontrib><creatorcontrib>Ávila‐Orta, Carlos Alberto</creatorcontrib><creatorcontrib>Ramos‐De Valle, Luis Francisco</creatorcontrib><creatorcontrib>Hernández‐Gámez, Francisco</creatorcontrib><creatorcontrib>Rivera‐Salinas, Jorge Enrique</creatorcontrib><creatorcontrib>Soriano‐Corral, Florentino</creatorcontrib><title>Relationship among Extrusion Conditions, Cell Morphology, and Properties of Starch‐Based Foams—A Review</title><title>Starch - Stärke</title><description>Environmental impact concern of conventional polymer foams has attracted considerable interest for the development of natural‐based polymer foams. Starch is a biopolymer that is gaining acceptability due to its renewability, availability, environmental biodegradation, and low cost. Extrusion is particularly desirable to produce starch‐based foams because it can produce a homogeneous mixing, high heat transfer, high pressure, reduction of the residence time, and low production costs. This review explains the transformation of starch during the foam processing and their relationship with extrusion conditions such as water content, barrel temperature, screw configuration and speed, die temperature, and die dimensions and how all these factors impact on the cell morphology, apparent density, expansion ratio, and final properties of starch‐based foams. The strategies to reduce water sensitivity are described, as well as the effect of amylose content and the addition of additives to improve the starch‐based foams performance as alternative for expanded polystyrene. The extrusion processing conditions can be controlled to obtain the desirable properties for specific applications such as cushioning, packaging, and loose‐fill, among others. Also, a brief look at the starch‐based foams trends, challenges, and perspectives are also discussed. Starch‐based foams are an alternative as a substitute for synthetic plastics. Water acts as both plasticized and foaming agent impacting on viscoelastic behavior. Rheological and morphological properties are influenced by extrusion conditions.</description><subject>Additives</subject><subject>Amylose</subject><subject>Biodegradation</subject><subject>Biopolymers</subject><subject>Bulk density</subject><subject>Cell morphology</subject><subject>Cytology</subject><subject>density</subject><subject>Environmental impact</subject><subject>expansion ratio</subject><subject>extrusion conditions</subject><subject>Extrusion rate</subject><subject>Foams</subject><subject>Heat transfer</subject><subject>High pressure</subject><subject>Moisture content</subject><subject>Morphology</subject><subject>Plastic foam</subject><subject>Polymers</subject><subject>Polystyrene</subject><subject>Polystyrene resins</subject><subject>Production costs</subject><subject>Starch</subject><subject>starch‐based foams</subject><subject>Water content</subject><issn>0038-9056</issn><issn>1521-379X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkM9OwkAQhzdGExG9et7EK8XZbrd_jkhETTAawMRbs91OoVi6dbeI3HgEDz4hT2IRo0dPk8z8vpnJR8g5gy4DcC9tLU3XBdcFYMAPSIsJlzk8iJ4PSQuAh04Ewj8mJ9bOAXwReKxFXkZYyDrXpZ3lFZULXU7p9Xttlrbp0b4u0_x72qF9LAp6r00104WerjtUlil9NLpCU-doqc7ouPlAzbabjytpMaUDLRd2u_ns0RG-5bg6JUeZLCye_dQ2eRpcT_q3zvDh5q7fGzqKs4A7qUqUz6VwPfTCMINEuSxEKQIlI0AWZhwzTD2EJJUoFEt54gUsSYQQKpUZ8Da52O-tjH5doq3juV6asjkZu0HAA58Lz2tS3X1KGW2twSyuTL6QZh0ziHdC453Q-FdoA0R7YJUXuP4nHY8nvdEf-wVbDn5O</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Dircio‐Morales, Marco Antonio</creator><creator>Fonseca‐Florido, Heidi Andrea</creator><creator>Velazquez, Gonzalo</creator><creator>Ávila‐Orta, Carlos Alberto</creator><creator>Ramos‐De Valle, Luis Francisco</creator><creator>Hernández‐Gámez, Francisco</creator><creator>Rivera‐Salinas, Jorge Enrique</creator><creator>Soriano‐Corral, Florentino</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1901-9919</orcidid><orcidid>https://orcid.org/0000-0002-6861-2412</orcidid></search><sort><creationdate>202301</creationdate><title>Relationship among Extrusion Conditions, Cell Morphology, and Properties of Starch‐Based Foams—A Review</title><author>Dircio‐Morales, Marco Antonio ; Fonseca‐Florido, Heidi Andrea ; Velazquez, Gonzalo ; Ávila‐Orta, Carlos Alberto ; Ramos‐De Valle, Luis Francisco ; Hernández‐Gámez, Francisco ; Rivera‐Salinas, Jorge Enrique ; Soriano‐Corral, Florentino</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3173-dcbc63a524e488f0bc218ea57ca90e18f3efed4e0bdae5c1d3b471bb555cdaf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Additives</topic><topic>Amylose</topic><topic>Biodegradation</topic><topic>Biopolymers</topic><topic>Bulk density</topic><topic>Cell morphology</topic><topic>Cytology</topic><topic>density</topic><topic>Environmental impact</topic><topic>expansion ratio</topic><topic>extrusion conditions</topic><topic>Extrusion rate</topic><topic>Foams</topic><topic>Heat transfer</topic><topic>High pressure</topic><topic>Moisture content</topic><topic>Morphology</topic><topic>Plastic foam</topic><topic>Polymers</topic><topic>Polystyrene</topic><topic>Polystyrene resins</topic><topic>Production costs</topic><topic>Starch</topic><topic>starch‐based foams</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dircio‐Morales, Marco Antonio</creatorcontrib><creatorcontrib>Fonseca‐Florido, Heidi Andrea</creatorcontrib><creatorcontrib>Velazquez, Gonzalo</creatorcontrib><creatorcontrib>Ávila‐Orta, Carlos Alberto</creatorcontrib><creatorcontrib>Ramos‐De Valle, Luis Francisco</creatorcontrib><creatorcontrib>Hernández‐Gámez, Francisco</creatorcontrib><creatorcontrib>Rivera‐Salinas, Jorge Enrique</creatorcontrib><creatorcontrib>Soriano‐Corral, Florentino</creatorcontrib><collection>CrossRef</collection><jtitle>Starch - Stärke</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dircio‐Morales, Marco Antonio</au><au>Fonseca‐Florido, Heidi Andrea</au><au>Velazquez, Gonzalo</au><au>Ávila‐Orta, Carlos Alberto</au><au>Ramos‐De Valle, Luis Francisco</au><au>Hernández‐Gámez, Francisco</au><au>Rivera‐Salinas, Jorge Enrique</au><au>Soriano‐Corral, Florentino</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relationship among Extrusion Conditions, Cell Morphology, and Properties of Starch‐Based Foams—A Review</atitle><jtitle>Starch - Stärke</jtitle><date>2023-01</date><risdate>2023</risdate><volume>75</volume><issue>1-2</issue><epage>n/a</epage><issn>0038-9056</issn><eissn>1521-379X</eissn><abstract>Environmental impact concern of conventional polymer foams has attracted considerable interest for the development of natural‐based polymer foams. Starch is a biopolymer that is gaining acceptability due to its renewability, availability, environmental biodegradation, and low cost. Extrusion is particularly desirable to produce starch‐based foams because it can produce a homogeneous mixing, high heat transfer, high pressure, reduction of the residence time, and low production costs. This review explains the transformation of starch during the foam processing and their relationship with extrusion conditions such as water content, barrel temperature, screw configuration and speed, die temperature, and die dimensions and how all these factors impact on the cell morphology, apparent density, expansion ratio, and final properties of starch‐based foams. The strategies to reduce water sensitivity are described, as well as the effect of amylose content and the addition of additives to improve the starch‐based foams performance as alternative for expanded polystyrene. The extrusion processing conditions can be controlled to obtain the desirable properties for specific applications such as cushioning, packaging, and loose‐fill, among others. Also, a brief look at the starch‐based foams trends, challenges, and perspectives are also discussed. Starch‐based foams are an alternative as a substitute for synthetic plastics. Water acts as both plasticized and foaming agent impacting on viscoelastic behavior. Rheological and morphological properties are influenced by extrusion conditions.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/star.202200103</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1901-9919</orcidid><orcidid>https://orcid.org/0000-0002-6861-2412</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0038-9056
ispartof Starch - Stärke, 2023-01, Vol.75 (1-2), p.n/a
issn 0038-9056
1521-379X
language eng
recordid cdi_proquest_journals_2773763544
source Wiley Online Library Journals Frontfile Complete
subjects Additives
Amylose
Biodegradation
Biopolymers
Bulk density
Cell morphology
Cytology
density
Environmental impact
expansion ratio
extrusion conditions
Extrusion rate
Foams
Heat transfer
High pressure
Moisture content
Morphology
Plastic foam
Polymers
Polystyrene
Polystyrene resins
Production costs
Starch
starch‐based foams
Water content
title Relationship among Extrusion Conditions, Cell Morphology, and Properties of Starch‐Based Foams—A Review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A44%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relationship%20among%20Extrusion%20Conditions,%20Cell%20Morphology,%20and%20Properties%20of%20Starch%E2%80%90Based%20Foams%E2%80%94A%20Review&rft.jtitle=Starch%20-%20St%C3%A4rke&rft.au=Dircio%E2%80%90Morales,%20Marco%20Antonio&rft.date=2023-01&rft.volume=75&rft.issue=1-2&rft.epage=n/a&rft.issn=0038-9056&rft.eissn=1521-379X&rft_id=info:doi/10.1002/star.202200103&rft_dat=%3Cproquest_cross%3E2773763544%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2773763544&rft_id=info:pmid/&rfr_iscdi=true