Optimal dynamic multi-keyword bidding policy of an advertiser in search-based advertising

Sponsored search advertisement allows advertisers to target their messages to appropriate customer segments at low costs. While search engines are interested in auction mechanisms that boost their revenues, advertisers seek optimal bidding strategies to increase their net sale revenues for multiple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods of operations research (Heidelberg, Germany) Germany), 2023-02, Vol.97 (1), p.25-56
Hauptverfasser: Dayanik, Savas, Sezer, Semih O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 56
container_issue 1
container_start_page 25
container_title Mathematical methods of operations research (Heidelberg, Germany)
container_volume 97
creator Dayanik, Savas
Sezer, Semih O.
description Sponsored search advertisement allows advertisers to target their messages to appropriate customer segments at low costs. While search engines are interested in auction mechanisms that boost their revenues, advertisers seek optimal bidding strategies to increase their net sale revenues for multiple keywords under strict daily budget constraints in an environment where keyword query arrivals, competitor bid amounts, and user purchases are random. We focus on the advertiser’s question and formulate her optimal intraday dynamic multi-keyword bidding problem as a continuous-time stochastic optimization problem. We solve the problem, characterize an optimal policy, and bring a numerical algorithm for implementation. We also illustrate our optimal bidding policy and its benefits over heuristic solutions on numerical examples.
doi_str_mv 10.1007/s00186-022-00803-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2773474140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2773474140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-e9917fa5ab0463752c28f4fb74ad67758451868846bd7e68fa6b8849b4681b013</originalsourceid><addsrcrecordid>eNp9ULtOwzAUtRBIlMIPMFliNvgV2xlRxUuq1AUGJsuOneKSJsFOQfl7DKnoxnTv1T0PnQPAJcHXBGN5kzAmSiBMKcJYYYbGIzAjnFFUUCKP9zstS34KzlLa4IznnM7A66ofwtY00I2t2YYKbnfNENC7H7-66KANzoV2DfuuCdUIuxqaFhr36eMQko8wtDB5E6s3ZE3y7u-VOefgpDZN8hf7OQcv93fPi0e0XD08LW6XqOIFG5AvSyJrUxiLuWCyoBVVNa-t5MYJKQvFi5xMKS6sk16o2gibr9JyoYjFhM3B1aTbx-5j59OgN90uttlSUykZl5xwnFF0QlWxSyn6Wvcx546jJlj_VKinCnWuUP9WqMdMghPJV10b0oGimCoU5eJHl02QlJ_t2seD-z_C37qzfsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773474140</pqid></control><display><type>article</type><title>Optimal dynamic multi-keyword bidding policy of an advertiser in search-based advertising</title><source>SpringerNature Journals</source><source>EBSCOhost Business Source Complete</source><creator>Dayanik, Savas ; Sezer, Semih O.</creator><creatorcontrib>Dayanik, Savas ; Sezer, Semih O.</creatorcontrib><description>Sponsored search advertisement allows advertisers to target their messages to appropriate customer segments at low costs. While search engines are interested in auction mechanisms that boost their revenues, advertisers seek optimal bidding strategies to increase their net sale revenues for multiple keywords under strict daily budget constraints in an environment where keyword query arrivals, competitor bid amounts, and user purchases are random. We focus on the advertiser’s question and formulate her optimal intraday dynamic multi-keyword bidding problem as a continuous-time stochastic optimization problem. We solve the problem, characterize an optimal policy, and bring a numerical algorithm for implementation. We also illustrate our optimal bidding policy and its benefits over heuristic solutions on numerical examples.</description><identifier>ISSN: 1432-2994</identifier><identifier>EISSN: 1432-5217</identifier><identifier>DOI: 10.1007/s00186-022-00803-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Advertisers ; Advertising ; Algorithms ; Auctions ; Bids ; Budgets ; Business and Management ; Calculus of Variations and Optimal Control; Optimization ; Competition ; Dynamic programming ; Mathematics ; Mathematics and Statistics ; Numerical analysis ; Operations research ; Operations Research/Decision Theory ; Optimization ; Original Article ; Revenue ; Search engines</subject><ispartof>Mathematical methods of operations research (Heidelberg, Germany), 2023-02, Vol.97 (1), p.25-56</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-e9917fa5ab0463752c28f4fb74ad67758451868846bd7e68fa6b8849b4681b013</citedby><cites>FETCH-LOGICAL-c453t-e9917fa5ab0463752c28f4fb74ad67758451868846bd7e68fa6b8849b4681b013</cites><orcidid>0000-0003-4215-7703 ; 0000-0002-0810-5507</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00186-022-00803-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00186-022-00803-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Dayanik, Savas</creatorcontrib><creatorcontrib>Sezer, Semih O.</creatorcontrib><title>Optimal dynamic multi-keyword bidding policy of an advertiser in search-based advertising</title><title>Mathematical methods of operations research (Heidelberg, Germany)</title><addtitle>Math Meth Oper Res</addtitle><description>Sponsored search advertisement allows advertisers to target their messages to appropriate customer segments at low costs. While search engines are interested in auction mechanisms that boost their revenues, advertisers seek optimal bidding strategies to increase their net sale revenues for multiple keywords under strict daily budget constraints in an environment where keyword query arrivals, competitor bid amounts, and user purchases are random. We focus on the advertiser’s question and formulate her optimal intraday dynamic multi-keyword bidding problem as a continuous-time stochastic optimization problem. We solve the problem, characterize an optimal policy, and bring a numerical algorithm for implementation. We also illustrate our optimal bidding policy and its benefits over heuristic solutions on numerical examples.</description><subject>Advertisers</subject><subject>Advertising</subject><subject>Algorithms</subject><subject>Auctions</subject><subject>Bids</subject><subject>Budgets</subject><subject>Business and Management</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Competition</subject><subject>Dynamic programming</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical analysis</subject><subject>Operations research</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Revenue</subject><subject>Search engines</subject><issn>1432-2994</issn><issn>1432-5217</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9ULtOwzAUtRBIlMIPMFliNvgV2xlRxUuq1AUGJsuOneKSJsFOQfl7DKnoxnTv1T0PnQPAJcHXBGN5kzAmSiBMKcJYYYbGIzAjnFFUUCKP9zstS34KzlLa4IznnM7A66ofwtY00I2t2YYKbnfNENC7H7-66KANzoV2DfuuCdUIuxqaFhr36eMQko8wtDB5E6s3ZE3y7u-VOefgpDZN8hf7OQcv93fPi0e0XD08LW6XqOIFG5AvSyJrUxiLuWCyoBVVNa-t5MYJKQvFi5xMKS6sk16o2gibr9JyoYjFhM3B1aTbx-5j59OgN90uttlSUykZl5xwnFF0QlWxSyn6Wvcx546jJlj_VKinCnWuUP9WqMdMghPJV10b0oGimCoU5eJHl02QlJ_t2seD-z_C37qzfsQ</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Dayanik, Savas</creator><creator>Sezer, Semih O.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-4215-7703</orcidid><orcidid>https://orcid.org/0000-0002-0810-5507</orcidid></search><sort><creationdate>20230201</creationdate><title>Optimal dynamic multi-keyword bidding policy of an advertiser in search-based advertising</title><author>Dayanik, Savas ; Sezer, Semih O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-e9917fa5ab0463752c28f4fb74ad67758451868846bd7e68fa6b8849b4681b013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Advertisers</topic><topic>Advertising</topic><topic>Algorithms</topic><topic>Auctions</topic><topic>Bids</topic><topic>Budgets</topic><topic>Business and Management</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Competition</topic><topic>Dynamic programming</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical analysis</topic><topic>Operations research</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Revenue</topic><topic>Search engines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dayanik, Savas</creatorcontrib><creatorcontrib>Sezer, Semih O.</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical methods of operations research (Heidelberg, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dayanik, Savas</au><au>Sezer, Semih O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal dynamic multi-keyword bidding policy of an advertiser in search-based advertising</atitle><jtitle>Mathematical methods of operations research (Heidelberg, Germany)</jtitle><stitle>Math Meth Oper Res</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>97</volume><issue>1</issue><spage>25</spage><epage>56</epage><pages>25-56</pages><issn>1432-2994</issn><eissn>1432-5217</eissn><abstract>Sponsored search advertisement allows advertisers to target their messages to appropriate customer segments at low costs. While search engines are interested in auction mechanisms that boost their revenues, advertisers seek optimal bidding strategies to increase their net sale revenues for multiple keywords under strict daily budget constraints in an environment where keyword query arrivals, competitor bid amounts, and user purchases are random. We focus on the advertiser’s question and formulate her optimal intraday dynamic multi-keyword bidding problem as a continuous-time stochastic optimization problem. We solve the problem, characterize an optimal policy, and bring a numerical algorithm for implementation. We also illustrate our optimal bidding policy and its benefits over heuristic solutions on numerical examples.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00186-022-00803-y</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0003-4215-7703</orcidid><orcidid>https://orcid.org/0000-0002-0810-5507</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1432-2994
ispartof Mathematical methods of operations research (Heidelberg, Germany), 2023-02, Vol.97 (1), p.25-56
issn 1432-2994
1432-5217
language eng
recordid cdi_proquest_journals_2773474140
source SpringerNature Journals; EBSCOhost Business Source Complete
subjects Advertisers
Advertising
Algorithms
Auctions
Bids
Budgets
Business and Management
Calculus of Variations and Optimal Control
Optimization
Competition
Dynamic programming
Mathematics
Mathematics and Statistics
Numerical analysis
Operations research
Operations Research/Decision Theory
Optimization
Original Article
Revenue
Search engines
title Optimal dynamic multi-keyword bidding policy of an advertiser in search-based advertising
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A39%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20dynamic%20multi-keyword%20bidding%20policy%20of%20an%20advertiser%20in%20search-based%20advertising&rft.jtitle=Mathematical%20methods%20of%20operations%20research%20(Heidelberg,%20Germany)&rft.au=Dayanik,%20Savas&rft.date=2023-02-01&rft.volume=97&rft.issue=1&rft.spage=25&rft.epage=56&rft.pages=25-56&rft.issn=1432-2994&rft.eissn=1432-5217&rft_id=info:doi/10.1007/s00186-022-00803-y&rft_dat=%3Cproquest_cross%3E2773474140%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2773474140&rft_id=info:pmid/&rfr_iscdi=true