Controlling the Skyrmion Density and Size for Quantized Convolutional Neural Networks

Skyrmion devices show energy efficient and high integration data storage and computing capabilities. Herein, we present the results of experimental and micromagnetic investigations of the creation and stability of magnetic skyrmions in the Ta/IrMn/CoFeB/MgO thin film system. We investigate the magne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-02
Hauptverfasser: Lone, Aijaz H, Ganguly, Arnab, Li, Hanrui, El- Atab, Nazek, Das, Gobind, Fariborzi, H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Lone, Aijaz H
Ganguly, Arnab
Li, Hanrui
El- Atab, Nazek
Das, Gobind
Fariborzi, H
description Skyrmion devices show energy efficient and high integration data storage and computing capabilities. Herein, we present the results of experimental and micromagnetic investigations of the creation and stability of magnetic skyrmions in the Ta/IrMn/CoFeB/MgO thin film system. We investigate the magnetic-field dependence of the skyrmion density and size using polar magneto optical Kerr effect MOKE microscopy supported by a micromagnetic study. The evolution of the topological charge with time under a magnetic field is investigated, and the transformation dynamics are explained. Furthermore, considering the voltage control of these skyrmion devices, we evaluate the dependence of the skyrmion size and density on the Dzyaloshinskii Moriya interaction and the magnetic anisotropy. We furthermore propose a skyrmion based synaptic device based on the results of the MOKE and micromagnetic investigations. We demonstrate the spin-orbit torque controlled discrete topological resistance states with high linearity and uniformity in the device. The discrete nature of the topological resistance makes it a good candidate to realize hardware implementation of weight quantization in a quantized neural network (QNN). The neural network is trained and tested on the CIFAR10 dataset, where the devices act as synapses to achieve a recognition accuracy of 87%, which is comparable to the result of ideal software-based methods.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2773472815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2773472815</sourcerecordid><originalsourceid>FETCH-proquest_journals_27734728153</originalsourceid><addsrcrecordid>eNqNi90KgjAYQEcQJOU7fNC1oJs2763oKgjrOgbOUte-2k9hT9-IHqCrw4FzJiSijGVJmVM6I7G1fZqmdMVpUbCInCrUzqBSnb6Au0qoh9HcOtSwltp2bgShG6i7t4QWDRy80C5IA-F7ovIupELBXnrzhXuhGeyCTFuhrIx_nJPldnOsdsnd4MNL6849ehNGe6acs5zTMivYf9UHEnFBeQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773472815</pqid></control><display><type>article</type><title>Controlling the Skyrmion Density and Size for Quantized Convolutional Neural Networks</title><source>Free E- Journals</source><creator>Lone, Aijaz H ; Ganguly, Arnab ; Li, Hanrui ; El- Atab, Nazek ; Das, Gobind ; Fariborzi, H</creator><creatorcontrib>Lone, Aijaz H ; Ganguly, Arnab ; Li, Hanrui ; El- Atab, Nazek ; Das, Gobind ; Fariborzi, H</creatorcontrib><description>Skyrmion devices show energy efficient and high integration data storage and computing capabilities. Herein, we present the results of experimental and micromagnetic investigations of the creation and stability of magnetic skyrmions in the Ta/IrMn/CoFeB/MgO thin film system. We investigate the magnetic-field dependence of the skyrmion density and size using polar magneto optical Kerr effect MOKE microscopy supported by a micromagnetic study. The evolution of the topological charge with time under a magnetic field is investigated, and the transformation dynamics are explained. Furthermore, considering the voltage control of these skyrmion devices, we evaluate the dependence of the skyrmion size and density on the Dzyaloshinskii Moriya interaction and the magnetic anisotropy. We furthermore propose a skyrmion based synaptic device based on the results of the MOKE and micromagnetic investigations. We demonstrate the spin-orbit torque controlled discrete topological resistance states with high linearity and uniformity in the device. The discrete nature of the topological resistance makes it a good candidate to realize hardware implementation of weight quantization in a quantized neural network (QNN). The neural network is trained and tested on the CIFAR10 dataset, where the devices act as synapses to achieve a recognition accuracy of 87%, which is comparable to the result of ideal software-based methods.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Data storage ; Density ; Hypothetical particles ; Investigations ; Kerr magnetooptical effect ; Magnetic anisotropy ; Neural networks ; Particle theory ; Synapses ; Thin films ; Topology</subject><ispartof>arXiv.org, 2023-02</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Lone, Aijaz H</creatorcontrib><creatorcontrib>Ganguly, Arnab</creatorcontrib><creatorcontrib>Li, Hanrui</creatorcontrib><creatorcontrib>El- Atab, Nazek</creatorcontrib><creatorcontrib>Das, Gobind</creatorcontrib><creatorcontrib>Fariborzi, H</creatorcontrib><title>Controlling the Skyrmion Density and Size for Quantized Convolutional Neural Networks</title><title>arXiv.org</title><description>Skyrmion devices show energy efficient and high integration data storage and computing capabilities. Herein, we present the results of experimental and micromagnetic investigations of the creation and stability of magnetic skyrmions in the Ta/IrMn/CoFeB/MgO thin film system. We investigate the magnetic-field dependence of the skyrmion density and size using polar magneto optical Kerr effect MOKE microscopy supported by a micromagnetic study. The evolution of the topological charge with time under a magnetic field is investigated, and the transformation dynamics are explained. Furthermore, considering the voltage control of these skyrmion devices, we evaluate the dependence of the skyrmion size and density on the Dzyaloshinskii Moriya interaction and the magnetic anisotropy. We furthermore propose a skyrmion based synaptic device based on the results of the MOKE and micromagnetic investigations. We demonstrate the spin-orbit torque controlled discrete topological resistance states with high linearity and uniformity in the device. The discrete nature of the topological resistance makes it a good candidate to realize hardware implementation of weight quantization in a quantized neural network (QNN). The neural network is trained and tested on the CIFAR10 dataset, where the devices act as synapses to achieve a recognition accuracy of 87%, which is comparable to the result of ideal software-based methods.</description><subject>Artificial neural networks</subject><subject>Data storage</subject><subject>Density</subject><subject>Hypothetical particles</subject><subject>Investigations</subject><subject>Kerr magnetooptical effect</subject><subject>Magnetic anisotropy</subject><subject>Neural networks</subject><subject>Particle theory</subject><subject>Synapses</subject><subject>Thin films</subject><subject>Topology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi90KgjAYQEcQJOU7fNC1oJs2763oKgjrOgbOUte-2k9hT9-IHqCrw4FzJiSijGVJmVM6I7G1fZqmdMVpUbCInCrUzqBSnb6Au0qoh9HcOtSwltp2bgShG6i7t4QWDRy80C5IA-F7ovIupELBXnrzhXuhGeyCTFuhrIx_nJPldnOsdsnd4MNL6849ehNGe6acs5zTMivYf9UHEnFBeQ</recordid><startdate>20230202</startdate><enddate>20230202</enddate><creator>Lone, Aijaz H</creator><creator>Ganguly, Arnab</creator><creator>Li, Hanrui</creator><creator>El- Atab, Nazek</creator><creator>Das, Gobind</creator><creator>Fariborzi, H</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230202</creationdate><title>Controlling the Skyrmion Density and Size for Quantized Convolutional Neural Networks</title><author>Lone, Aijaz H ; Ganguly, Arnab ; Li, Hanrui ; El- Atab, Nazek ; Das, Gobind ; Fariborzi, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27734728153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Data storage</topic><topic>Density</topic><topic>Hypothetical particles</topic><topic>Investigations</topic><topic>Kerr magnetooptical effect</topic><topic>Magnetic anisotropy</topic><topic>Neural networks</topic><topic>Particle theory</topic><topic>Synapses</topic><topic>Thin films</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Lone, Aijaz H</creatorcontrib><creatorcontrib>Ganguly, Arnab</creatorcontrib><creatorcontrib>Li, Hanrui</creatorcontrib><creatorcontrib>El- Atab, Nazek</creatorcontrib><creatorcontrib>Das, Gobind</creatorcontrib><creatorcontrib>Fariborzi, H</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lone, Aijaz H</au><au>Ganguly, Arnab</au><au>Li, Hanrui</au><au>El- Atab, Nazek</au><au>Das, Gobind</au><au>Fariborzi, H</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Controlling the Skyrmion Density and Size for Quantized Convolutional Neural Networks</atitle><jtitle>arXiv.org</jtitle><date>2023-02-02</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Skyrmion devices show energy efficient and high integration data storage and computing capabilities. Herein, we present the results of experimental and micromagnetic investigations of the creation and stability of magnetic skyrmions in the Ta/IrMn/CoFeB/MgO thin film system. We investigate the magnetic-field dependence of the skyrmion density and size using polar magneto optical Kerr effect MOKE microscopy supported by a micromagnetic study. The evolution of the topological charge with time under a magnetic field is investigated, and the transformation dynamics are explained. Furthermore, considering the voltage control of these skyrmion devices, we evaluate the dependence of the skyrmion size and density on the Dzyaloshinskii Moriya interaction and the magnetic anisotropy. We furthermore propose a skyrmion based synaptic device based on the results of the MOKE and micromagnetic investigations. We demonstrate the spin-orbit torque controlled discrete topological resistance states with high linearity and uniformity in the device. The discrete nature of the topological resistance makes it a good candidate to realize hardware implementation of weight quantization in a quantized neural network (QNN). The neural network is trained and tested on the CIFAR10 dataset, where the devices act as synapses to achieve a recognition accuracy of 87%, which is comparable to the result of ideal software-based methods.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2773472815
source Free E- Journals
subjects Artificial neural networks
Data storage
Density
Hypothetical particles
Investigations
Kerr magnetooptical effect
Magnetic anisotropy
Neural networks
Particle theory
Synapses
Thin films
Topology
title Controlling the Skyrmion Density and Size for Quantized Convolutional Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A46%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Controlling%20the%20Skyrmion%20Density%20and%20Size%20for%20Quantized%20Convolutional%20Neural%20Networks&rft.jtitle=arXiv.org&rft.au=Lone,%20Aijaz%20H&rft.date=2023-02-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2773472815%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2773472815&rft_id=info:pmid/&rfr_iscdi=true