Coxeter quiver representations in fusion categories and Gabriel's theorem

We introduce a notion of representation for a class of generalised quivers known as Coxeter quivers. These representations are built using fusion categories associated to \(U_q(\mathfrak{s}\mathfrak{l}_2)\) at roots of unity and we show that many of the classical results on representations of quiver...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-02
1. Verfasser: Heng, Edmund
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Heng, Edmund
description We introduce a notion of representation for a class of generalised quivers known as Coxeter quivers. These representations are built using fusion categories associated to \(U_q(\mathfrak{s}\mathfrak{l}_2)\) at roots of unity and we show that many of the classical results on representations of quivers can be generalised to this setting. Namely, we prove a generalised Gabriel's theorem for Coxeter quivers that encompasses all Coxeter--Dynkin diagrams -- including the non-crystallographic types \(H\) and \(I\). Moreover, a similar relation between reflection functors and Coxeter theory is used to show that the indecomposable representations correspond bijectively to the positive roots of Coxeter root systems over fusion rings.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2773472025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2773472025</sourcerecordid><originalsourceid>FETCH-proquest_journals_27734720253</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3CLhwVYgvrXFf_O3dl1hfNaUmbV4iHt8sPICrGZiZsQyk3Bb7EmDBcqJeCAE7BVUlM3ap3QcDej5F807wOHoktEEH4yxxY3kXKSlvdcCH8waJa3vnJ31LPmyIhyc6j68Vm3d6IMx_XLL18XCtz8Xo3RSRQtO76G1KDSglSwUCKvnf9QXnFT0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773472025</pqid></control><display><type>article</type><title>Coxeter quiver representations in fusion categories and Gabriel's theorem</title><source>Free E- Journals</source><creator>Heng, Edmund</creator><creatorcontrib>Heng, Edmund</creatorcontrib><description>We introduce a notion of representation for a class of generalised quivers known as Coxeter quivers. These representations are built using fusion categories associated to \(U_q(\mathfrak{s}\mathfrak{l}_2)\) at roots of unity and we show that many of the classical results on representations of quivers can be generalised to this setting. Namely, we prove a generalised Gabriel's theorem for Coxeter quivers that encompasses all Coxeter--Dynkin diagrams -- including the non-crystallographic types \(H\) and \(I\). Moreover, a similar relation between reflection functors and Coxeter theory is used to show that the indecomposable representations correspond bijectively to the positive roots of Coxeter root systems over fusion rings.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Categories ; Crystallography ; Representations ; Theorems</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Heng, Edmund</creatorcontrib><title>Coxeter quiver representations in fusion categories and Gabriel's theorem</title><title>arXiv.org</title><description>We introduce a notion of representation for a class of generalised quivers known as Coxeter quivers. These representations are built using fusion categories associated to \(U_q(\mathfrak{s}\mathfrak{l}_2)\) at roots of unity and we show that many of the classical results on representations of quivers can be generalised to this setting. Namely, we prove a generalised Gabriel's theorem for Coxeter quivers that encompasses all Coxeter--Dynkin diagrams -- including the non-crystallographic types \(H\) and \(I\). Moreover, a similar relation between reflection functors and Coxeter theory is used to show that the indecomposable representations correspond bijectively to the positive roots of Coxeter root systems over fusion rings.</description><subject>Algebra</subject><subject>Categories</subject><subject>Crystallography</subject><subject>Representations</subject><subject>Theorems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNiksKwjAUAIMgWLR3CLhwVYgvrXFf_O3dl1hfNaUmbV4iHt8sPICrGZiZsQyk3Bb7EmDBcqJeCAE7BVUlM3ap3QcDej5F807wOHoktEEH4yxxY3kXKSlvdcCH8waJa3vnJ31LPmyIhyc6j68Vm3d6IMx_XLL18XCtz8Xo3RSRQtO76G1KDSglSwUCKvnf9QXnFT0A</recordid><startdate>20240214</startdate><enddate>20240214</enddate><creator>Heng, Edmund</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240214</creationdate><title>Coxeter quiver representations in fusion categories and Gabriel's theorem</title><author>Heng, Edmund</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27734720253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Categories</topic><topic>Crystallography</topic><topic>Representations</topic><topic>Theorems</topic><toplevel>online_resources</toplevel><creatorcontrib>Heng, Edmund</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heng, Edmund</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Coxeter quiver representations in fusion categories and Gabriel's theorem</atitle><jtitle>arXiv.org</jtitle><date>2024-02-14</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We introduce a notion of representation for a class of generalised quivers known as Coxeter quivers. These representations are built using fusion categories associated to \(U_q(\mathfrak{s}\mathfrak{l}_2)\) at roots of unity and we show that many of the classical results on representations of quivers can be generalised to this setting. Namely, we prove a generalised Gabriel's theorem for Coxeter quivers that encompasses all Coxeter--Dynkin diagrams -- including the non-crystallographic types \(H\) and \(I\). Moreover, a similar relation between reflection functors and Coxeter theory is used to show that the indecomposable representations correspond bijectively to the positive roots of Coxeter root systems over fusion rings.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2773472025
source Free E- Journals
subjects Algebra
Categories
Crystallography
Representations
Theorems
title Coxeter quiver representations in fusion categories and Gabriel's theorem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A41%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Coxeter%20quiver%20representations%20in%20fusion%20categories%20and%20Gabriel's%20theorem&rft.jtitle=arXiv.org&rft.au=Heng,%20Edmund&rft.date=2024-02-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2773472025%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2773472025&rft_id=info:pmid/&rfr_iscdi=true