Continuous Reinforcement Learning-Based Energy Management Strategy for Hybrid Electric-Tracked Vehicles

The hybrid electric-tracked vehicles (HETVs) are usually used in both agricultural and industrial applications, while the optimal energy management is critical to fully exploit the potential of HETVs. In this article, the influence of HETVs' steering resistance on the energy distribution is spe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of emerging and selected topics in power electronics 2023-02, Vol.11 (1), p.19-31
Hauptverfasser: Han, Ruoyan, Lian, Renzong, He, Hongwen, Han, Xuefeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 31
container_issue 1
container_start_page 19
container_title IEEE journal of emerging and selected topics in power electronics
container_volume 11
creator Han, Ruoyan
Lian, Renzong
He, Hongwen
Han, Xuefeng
description The hybrid electric-tracked vehicles (HETVs) are usually used in both agricultural and industrial applications, while the optimal energy management is critical to fully exploit the potential of HETVs. In this article, the influence of HETVs' steering resistance on the energy distribution is specially considered to model the dynamic demand accurately. Further, a multi-state energy management strategy (EMS) based on deep deterministic policy gradient (DDPG) is proposed for a series HETV in the continuous space. A multidimensional matrix framework is proposed to extract the parameters of the actor network from a trained DDPG-based EMS. Hardware-in-the-loop (HiL) experiment is conducted to validate the real-time tractability of the proposed strategy. Results suggest that the DDPG-based strategy improves the fuel economy remarkably by 13.1% and shows a more robust performance, compared with the double deep Q -learning-based strategy. Though the proposed strategy is trained based on the fixed state of charge (SOC), it still exhibits a strong adaptability to the uncertainty of initial SOCs.
doi_str_mv 10.1109/JESTPE.2021.3135059
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2773456232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9648197</ieee_id><sourcerecordid>2773456232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2483-3e8c4f8e52766e4013d282315f7bee615b8acc5071586e01f70cac705659a4ea3</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiUT5BVw28bzYj-3HHpWgaDAaQa9NKbNrEbrY7h7495YsYS4zmbzPTPIgNCJ4TAgu71-ni-XHdEwxJWNGGMe8vEADSoTKhVT88jxLeY2GMW5wKkV5KdUA1ZPGt853TRezT3C-aoKFHfg2m4MJ3vk6fzQR1tnUQ6gP2Zvxpu4DizaYFtIuMdnssAoupbZg2-BsvgzG_ibsG36c3UK8RVeV2UYYnvoN-nqaLiezfP7-_DJ5mOeWForlDJQtKgWcSiGgwIStqaKM8EquAAThK2Ws5VgSrgRgUklsjZWYC16aAgy7QXf93X1o_jqIrd40XfDppaZSsoILymhKsT5lQxNjgErvg9uZcNAE66NU3UvVR6n6JDVRo55yAHAmSlEoUkr2D6N5c4o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773456232</pqid></control><display><type>article</type><title>Continuous Reinforcement Learning-Based Energy Management Strategy for Hybrid Electric-Tracked Vehicles</title><source>IEEE Electronic Library (IEL)</source><creator>Han, Ruoyan ; Lian, Renzong ; He, Hongwen ; Han, Xuefeng</creator><creatorcontrib>Han, Ruoyan ; Lian, Renzong ; He, Hongwen ; Han, Xuefeng</creatorcontrib><description>The hybrid electric-tracked vehicles (HETVs) are usually used in both agricultural and industrial applications, while the optimal energy management is critical to fully exploit the potential of HETVs. In this article, the influence of HETVs' steering resistance on the energy distribution is specially considered to model the dynamic demand accurately. Further, a multi-state energy management strategy (EMS) based on deep deterministic policy gradient (DDPG) is proposed for a series HETV in the continuous space. A multidimensional matrix framework is proposed to extract the parameters of the actor network from a trained DDPG-based EMS. Hardware-in-the-loop (HiL) experiment is conducted to validate the real-time tractability of the proposed strategy. Results suggest that the DDPG-based strategy improves the fuel economy remarkably by 13.1% and shows a more robust performance, compared with the double deep &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;Q &lt;/tex-math&gt;&lt;/inline-formula&gt;-learning-based strategy. Though the proposed strategy is trained based on the fixed state of charge (SOC), it still exhibits a strong adaptability to the uncertainty of initial SOCs.</description><identifier>ISSN: 2168-6777</identifier><identifier>EISSN: 2168-6785</identifier><identifier>DOI: 10.1109/JESTPE.2021.3135059</identifier><identifier>CODEN: IJESN2</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aerodynamics ; Batteries ; Energy distribution ; Energy management ; Energy management strategy (EMS) ; Fuel economy ; hardware-in-the-loop (HiL) ; hybrid electric vehicle (HEV) ; Immune system ; Industrial applications ; machine learning ; Real-time systems ; State of charge ; Steering ; Torque ; Tracked vehicles ; Vehicle dynamics</subject><ispartof>IEEE journal of emerging and selected topics in power electronics, 2023-02, Vol.11 (1), p.19-31</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2483-3e8c4f8e52766e4013d282315f7bee615b8acc5071586e01f70cac705659a4ea3</citedby><cites>FETCH-LOGICAL-c2483-3e8c4f8e52766e4013d282315f7bee615b8acc5071586e01f70cac705659a4ea3</cites><orcidid>0000-0003-2874-1858 ; 0000-0002-9956-7167 ; 0000-0001-9804-6370</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9648197$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9648197$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Han, Ruoyan</creatorcontrib><creatorcontrib>Lian, Renzong</creatorcontrib><creatorcontrib>He, Hongwen</creatorcontrib><creatorcontrib>Han, Xuefeng</creatorcontrib><title>Continuous Reinforcement Learning-Based Energy Management Strategy for Hybrid Electric-Tracked Vehicles</title><title>IEEE journal of emerging and selected topics in power electronics</title><addtitle>JESTPE</addtitle><description>The hybrid electric-tracked vehicles (HETVs) are usually used in both agricultural and industrial applications, while the optimal energy management is critical to fully exploit the potential of HETVs. In this article, the influence of HETVs' steering resistance on the energy distribution is specially considered to model the dynamic demand accurately. Further, a multi-state energy management strategy (EMS) based on deep deterministic policy gradient (DDPG) is proposed for a series HETV in the continuous space. A multidimensional matrix framework is proposed to extract the parameters of the actor network from a trained DDPG-based EMS. Hardware-in-the-loop (HiL) experiment is conducted to validate the real-time tractability of the proposed strategy. Results suggest that the DDPG-based strategy improves the fuel economy remarkably by 13.1% and shows a more robust performance, compared with the double deep &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;Q &lt;/tex-math&gt;&lt;/inline-formula&gt;-learning-based strategy. Though the proposed strategy is trained based on the fixed state of charge (SOC), it still exhibits a strong adaptability to the uncertainty of initial SOCs.</description><subject>Aerodynamics</subject><subject>Batteries</subject><subject>Energy distribution</subject><subject>Energy management</subject><subject>Energy management strategy (EMS)</subject><subject>Fuel economy</subject><subject>hardware-in-the-loop (HiL)</subject><subject>hybrid electric vehicle (HEV)</subject><subject>Immune system</subject><subject>Industrial applications</subject><subject>machine learning</subject><subject>Real-time systems</subject><subject>State of charge</subject><subject>Steering</subject><subject>Torque</subject><subject>Tracked vehicles</subject><subject>Vehicle dynamics</subject><issn>2168-6777</issn><issn>2168-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEQhhujiUT5BVw28bzYj-3HHpWgaDAaQa9NKbNrEbrY7h7495YsYS4zmbzPTPIgNCJ4TAgu71-ni-XHdEwxJWNGGMe8vEADSoTKhVT88jxLeY2GMW5wKkV5KdUA1ZPGt853TRezT3C-aoKFHfg2m4MJ3vk6fzQR1tnUQ6gP2Zvxpu4DizaYFtIuMdnssAoupbZg2-BsvgzG_ibsG36c3UK8RVeV2UYYnvoN-nqaLiezfP7-_DJ5mOeWForlDJQtKgWcSiGgwIStqaKM8EquAAThK2Ws5VgSrgRgUklsjZWYC16aAgy7QXf93X1o_jqIrd40XfDppaZSsoILymhKsT5lQxNjgErvg9uZcNAE66NU3UvVR6n6JDVRo55yAHAmSlEoUkr2D6N5c4o</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Han, Ruoyan</creator><creator>Lian, Renzong</creator><creator>He, Hongwen</creator><creator>Han, Xuefeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2874-1858</orcidid><orcidid>https://orcid.org/0000-0002-9956-7167</orcidid><orcidid>https://orcid.org/0000-0001-9804-6370</orcidid></search><sort><creationdate>20230201</creationdate><title>Continuous Reinforcement Learning-Based Energy Management Strategy for Hybrid Electric-Tracked Vehicles</title><author>Han, Ruoyan ; Lian, Renzong ; He, Hongwen ; Han, Xuefeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2483-3e8c4f8e52766e4013d282315f7bee615b8acc5071586e01f70cac705659a4ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aerodynamics</topic><topic>Batteries</topic><topic>Energy distribution</topic><topic>Energy management</topic><topic>Energy management strategy (EMS)</topic><topic>Fuel economy</topic><topic>hardware-in-the-loop (HiL)</topic><topic>hybrid electric vehicle (HEV)</topic><topic>Immune system</topic><topic>Industrial applications</topic><topic>machine learning</topic><topic>Real-time systems</topic><topic>State of charge</topic><topic>Steering</topic><topic>Torque</topic><topic>Tracked vehicles</topic><topic>Vehicle dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Ruoyan</creatorcontrib><creatorcontrib>Lian, Renzong</creatorcontrib><creatorcontrib>He, Hongwen</creatorcontrib><creatorcontrib>Han, Xuefeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of emerging and selected topics in power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Han, Ruoyan</au><au>Lian, Renzong</au><au>He, Hongwen</au><au>Han, Xuefeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous Reinforcement Learning-Based Energy Management Strategy for Hybrid Electric-Tracked Vehicles</atitle><jtitle>IEEE journal of emerging and selected topics in power electronics</jtitle><stitle>JESTPE</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>11</volume><issue>1</issue><spage>19</spage><epage>31</epage><pages>19-31</pages><issn>2168-6777</issn><eissn>2168-6785</eissn><coden>IJESN2</coden><abstract>The hybrid electric-tracked vehicles (HETVs) are usually used in both agricultural and industrial applications, while the optimal energy management is critical to fully exploit the potential of HETVs. In this article, the influence of HETVs' steering resistance on the energy distribution is specially considered to model the dynamic demand accurately. Further, a multi-state energy management strategy (EMS) based on deep deterministic policy gradient (DDPG) is proposed for a series HETV in the continuous space. A multidimensional matrix framework is proposed to extract the parameters of the actor network from a trained DDPG-based EMS. Hardware-in-the-loop (HiL) experiment is conducted to validate the real-time tractability of the proposed strategy. Results suggest that the DDPG-based strategy improves the fuel economy remarkably by 13.1% and shows a more robust performance, compared with the double deep &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;Q &lt;/tex-math&gt;&lt;/inline-formula&gt;-learning-based strategy. Though the proposed strategy is trained based on the fixed state of charge (SOC), it still exhibits a strong adaptability to the uncertainty of initial SOCs.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JESTPE.2021.3135059</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2874-1858</orcidid><orcidid>https://orcid.org/0000-0002-9956-7167</orcidid><orcidid>https://orcid.org/0000-0001-9804-6370</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-6777
ispartof IEEE journal of emerging and selected topics in power electronics, 2023-02, Vol.11 (1), p.19-31
issn 2168-6777
2168-6785
language eng
recordid cdi_proquest_journals_2773456232
source IEEE Electronic Library (IEL)
subjects Aerodynamics
Batteries
Energy distribution
Energy management
Energy management strategy (EMS)
Fuel economy
hardware-in-the-loop (HiL)
hybrid electric vehicle (HEV)
Immune system
Industrial applications
machine learning
Real-time systems
State of charge
Steering
Torque
Tracked vehicles
Vehicle dynamics
title Continuous Reinforcement Learning-Based Energy Management Strategy for Hybrid Electric-Tracked Vehicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T13%3A31%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20Reinforcement%20Learning-Based%20Energy%20Management%20Strategy%20for%20Hybrid%20Electric-Tracked%20Vehicles&rft.jtitle=IEEE%20journal%20of%20emerging%20and%20selected%20topics%20in%20power%20electronics&rft.au=Han,%20Ruoyan&rft.date=2023-02-01&rft.volume=11&rft.issue=1&rft.spage=19&rft.epage=31&rft.pages=19-31&rft.issn=2168-6777&rft.eissn=2168-6785&rft.coden=IJESN2&rft_id=info:doi/10.1109/JESTPE.2021.3135059&rft_dat=%3Cproquest_RIE%3E2773456232%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2773456232&rft_id=info:pmid/&rft_ieee_id=9648197&rfr_iscdi=true