Continuous Reinforcement Learning-Based Energy Management Strategy for Hybrid Electric-Tracked Vehicles
The hybrid electric-tracked vehicles (HETVs) are usually used in both agricultural and industrial applications, while the optimal energy management is critical to fully exploit the potential of HETVs. In this article, the influence of HETVs' steering resistance on the energy distribution is spe...
Gespeichert in:
Veröffentlicht in: | IEEE journal of emerging and selected topics in power electronics 2023-02, Vol.11 (1), p.19-31 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 31 |
---|---|
container_issue | 1 |
container_start_page | 19 |
container_title | IEEE journal of emerging and selected topics in power electronics |
container_volume | 11 |
creator | Han, Ruoyan Lian, Renzong He, Hongwen Han, Xuefeng |
description | The hybrid electric-tracked vehicles (HETVs) are usually used in both agricultural and industrial applications, while the optimal energy management is critical to fully exploit the potential of HETVs. In this article, the influence of HETVs' steering resistance on the energy distribution is specially considered to model the dynamic demand accurately. Further, a multi-state energy management strategy (EMS) based on deep deterministic policy gradient (DDPG) is proposed for a series HETV in the continuous space. A multidimensional matrix framework is proposed to extract the parameters of the actor network from a trained DDPG-based EMS. Hardware-in-the-loop (HiL) experiment is conducted to validate the real-time tractability of the proposed strategy. Results suggest that the DDPG-based strategy improves the fuel economy remarkably by 13.1% and shows a more robust performance, compared with the double deep Q -learning-based strategy. Though the proposed strategy is trained based on the fixed state of charge (SOC), it still exhibits a strong adaptability to the uncertainty of initial SOCs. |
doi_str_mv | 10.1109/JESTPE.2021.3135059 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2773456232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9648197</ieee_id><sourcerecordid>2773456232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2483-3e8c4f8e52766e4013d282315f7bee615b8acc5071586e01f70cac705659a4ea3</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiUT5BVw28bzYj-3HHpWgaDAaQa9NKbNrEbrY7h7495YsYS4zmbzPTPIgNCJ4TAgu71-ni-XHdEwxJWNGGMe8vEADSoTKhVT88jxLeY2GMW5wKkV5KdUA1ZPGt853TRezT3C-aoKFHfg2m4MJ3vk6fzQR1tnUQ6gP2Zvxpu4DizaYFtIuMdnssAoupbZg2-BsvgzG_ibsG36c3UK8RVeV2UYYnvoN-nqaLiezfP7-_DJ5mOeWForlDJQtKgWcSiGgwIStqaKM8EquAAThK2Ws5VgSrgRgUklsjZWYC16aAgy7QXf93X1o_jqIrd40XfDppaZSsoILymhKsT5lQxNjgErvg9uZcNAE66NU3UvVR6n6JDVRo55yAHAmSlEoUkr2D6N5c4o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773456232</pqid></control><display><type>article</type><title>Continuous Reinforcement Learning-Based Energy Management Strategy for Hybrid Electric-Tracked Vehicles</title><source>IEEE Electronic Library (IEL)</source><creator>Han, Ruoyan ; Lian, Renzong ; He, Hongwen ; Han, Xuefeng</creator><creatorcontrib>Han, Ruoyan ; Lian, Renzong ; He, Hongwen ; Han, Xuefeng</creatorcontrib><description>The hybrid electric-tracked vehicles (HETVs) are usually used in both agricultural and industrial applications, while the optimal energy management is critical to fully exploit the potential of HETVs. In this article, the influence of HETVs' steering resistance on the energy distribution is specially considered to model the dynamic demand accurately. Further, a multi-state energy management strategy (EMS) based on deep deterministic policy gradient (DDPG) is proposed for a series HETV in the continuous space. A multidimensional matrix framework is proposed to extract the parameters of the actor network from a trained DDPG-based EMS. Hardware-in-the-loop (HiL) experiment is conducted to validate the real-time tractability of the proposed strategy. Results suggest that the DDPG-based strategy improves the fuel economy remarkably by 13.1% and shows a more robust performance, compared with the double deep <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-learning-based strategy. Though the proposed strategy is trained based on the fixed state of charge (SOC), it still exhibits a strong adaptability to the uncertainty of initial SOCs.</description><identifier>ISSN: 2168-6777</identifier><identifier>EISSN: 2168-6785</identifier><identifier>DOI: 10.1109/JESTPE.2021.3135059</identifier><identifier>CODEN: IJESN2</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aerodynamics ; Batteries ; Energy distribution ; Energy management ; Energy management strategy (EMS) ; Fuel economy ; hardware-in-the-loop (HiL) ; hybrid electric vehicle (HEV) ; Immune system ; Industrial applications ; machine learning ; Real-time systems ; State of charge ; Steering ; Torque ; Tracked vehicles ; Vehicle dynamics</subject><ispartof>IEEE journal of emerging and selected topics in power electronics, 2023-02, Vol.11 (1), p.19-31</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2483-3e8c4f8e52766e4013d282315f7bee615b8acc5071586e01f70cac705659a4ea3</citedby><cites>FETCH-LOGICAL-c2483-3e8c4f8e52766e4013d282315f7bee615b8acc5071586e01f70cac705659a4ea3</cites><orcidid>0000-0003-2874-1858 ; 0000-0002-9956-7167 ; 0000-0001-9804-6370</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9648197$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9648197$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Han, Ruoyan</creatorcontrib><creatorcontrib>Lian, Renzong</creatorcontrib><creatorcontrib>He, Hongwen</creatorcontrib><creatorcontrib>Han, Xuefeng</creatorcontrib><title>Continuous Reinforcement Learning-Based Energy Management Strategy for Hybrid Electric-Tracked Vehicles</title><title>IEEE journal of emerging and selected topics in power electronics</title><addtitle>JESTPE</addtitle><description>The hybrid electric-tracked vehicles (HETVs) are usually used in both agricultural and industrial applications, while the optimal energy management is critical to fully exploit the potential of HETVs. In this article, the influence of HETVs' steering resistance on the energy distribution is specially considered to model the dynamic demand accurately. Further, a multi-state energy management strategy (EMS) based on deep deterministic policy gradient (DDPG) is proposed for a series HETV in the continuous space. A multidimensional matrix framework is proposed to extract the parameters of the actor network from a trained DDPG-based EMS. Hardware-in-the-loop (HiL) experiment is conducted to validate the real-time tractability of the proposed strategy. Results suggest that the DDPG-based strategy improves the fuel economy remarkably by 13.1% and shows a more robust performance, compared with the double deep <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-learning-based strategy. Though the proposed strategy is trained based on the fixed state of charge (SOC), it still exhibits a strong adaptability to the uncertainty of initial SOCs.</description><subject>Aerodynamics</subject><subject>Batteries</subject><subject>Energy distribution</subject><subject>Energy management</subject><subject>Energy management strategy (EMS)</subject><subject>Fuel economy</subject><subject>hardware-in-the-loop (HiL)</subject><subject>hybrid electric vehicle (HEV)</subject><subject>Immune system</subject><subject>Industrial applications</subject><subject>machine learning</subject><subject>Real-time systems</subject><subject>State of charge</subject><subject>Steering</subject><subject>Torque</subject><subject>Tracked vehicles</subject><subject>Vehicle dynamics</subject><issn>2168-6777</issn><issn>2168-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEQhhujiUT5BVw28bzYj-3HHpWgaDAaQa9NKbNrEbrY7h7495YsYS4zmbzPTPIgNCJ4TAgu71-ni-XHdEwxJWNGGMe8vEADSoTKhVT88jxLeY2GMW5wKkV5KdUA1ZPGt853TRezT3C-aoKFHfg2m4MJ3vk6fzQR1tnUQ6gP2Zvxpu4DizaYFtIuMdnssAoupbZg2-BsvgzG_ibsG36c3UK8RVeV2UYYnvoN-nqaLiezfP7-_DJ5mOeWForlDJQtKgWcSiGgwIStqaKM8EquAAThK2Ws5VgSrgRgUklsjZWYC16aAgy7QXf93X1o_jqIrd40XfDppaZSsoILymhKsT5lQxNjgErvg9uZcNAE66NU3UvVR6n6JDVRo55yAHAmSlEoUkr2D6N5c4o</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Han, Ruoyan</creator><creator>Lian, Renzong</creator><creator>He, Hongwen</creator><creator>Han, Xuefeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2874-1858</orcidid><orcidid>https://orcid.org/0000-0002-9956-7167</orcidid><orcidid>https://orcid.org/0000-0001-9804-6370</orcidid></search><sort><creationdate>20230201</creationdate><title>Continuous Reinforcement Learning-Based Energy Management Strategy for Hybrid Electric-Tracked Vehicles</title><author>Han, Ruoyan ; Lian, Renzong ; He, Hongwen ; Han, Xuefeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2483-3e8c4f8e52766e4013d282315f7bee615b8acc5071586e01f70cac705659a4ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aerodynamics</topic><topic>Batteries</topic><topic>Energy distribution</topic><topic>Energy management</topic><topic>Energy management strategy (EMS)</topic><topic>Fuel economy</topic><topic>hardware-in-the-loop (HiL)</topic><topic>hybrid electric vehicle (HEV)</topic><topic>Immune system</topic><topic>Industrial applications</topic><topic>machine learning</topic><topic>Real-time systems</topic><topic>State of charge</topic><topic>Steering</topic><topic>Torque</topic><topic>Tracked vehicles</topic><topic>Vehicle dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Ruoyan</creatorcontrib><creatorcontrib>Lian, Renzong</creatorcontrib><creatorcontrib>He, Hongwen</creatorcontrib><creatorcontrib>Han, Xuefeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of emerging and selected topics in power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Han, Ruoyan</au><au>Lian, Renzong</au><au>He, Hongwen</au><au>Han, Xuefeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous Reinforcement Learning-Based Energy Management Strategy for Hybrid Electric-Tracked Vehicles</atitle><jtitle>IEEE journal of emerging and selected topics in power electronics</jtitle><stitle>JESTPE</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>11</volume><issue>1</issue><spage>19</spage><epage>31</epage><pages>19-31</pages><issn>2168-6777</issn><eissn>2168-6785</eissn><coden>IJESN2</coden><abstract>The hybrid electric-tracked vehicles (HETVs) are usually used in both agricultural and industrial applications, while the optimal energy management is critical to fully exploit the potential of HETVs. In this article, the influence of HETVs' steering resistance on the energy distribution is specially considered to model the dynamic demand accurately. Further, a multi-state energy management strategy (EMS) based on deep deterministic policy gradient (DDPG) is proposed for a series HETV in the continuous space. A multidimensional matrix framework is proposed to extract the parameters of the actor network from a trained DDPG-based EMS. Hardware-in-the-loop (HiL) experiment is conducted to validate the real-time tractability of the proposed strategy. Results suggest that the DDPG-based strategy improves the fuel economy remarkably by 13.1% and shows a more robust performance, compared with the double deep <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-learning-based strategy. Though the proposed strategy is trained based on the fixed state of charge (SOC), it still exhibits a strong adaptability to the uncertainty of initial SOCs.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JESTPE.2021.3135059</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2874-1858</orcidid><orcidid>https://orcid.org/0000-0002-9956-7167</orcidid><orcidid>https://orcid.org/0000-0001-9804-6370</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-6777 |
ispartof | IEEE journal of emerging and selected topics in power electronics, 2023-02, Vol.11 (1), p.19-31 |
issn | 2168-6777 2168-6785 |
language | eng |
recordid | cdi_proquest_journals_2773456232 |
source | IEEE Electronic Library (IEL) |
subjects | Aerodynamics Batteries Energy distribution Energy management Energy management strategy (EMS) Fuel economy hardware-in-the-loop (HiL) hybrid electric vehicle (HEV) Immune system Industrial applications machine learning Real-time systems State of charge Steering Torque Tracked vehicles Vehicle dynamics |
title | Continuous Reinforcement Learning-Based Energy Management Strategy for Hybrid Electric-Tracked Vehicles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T13%3A31%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20Reinforcement%20Learning-Based%20Energy%20Management%20Strategy%20for%20Hybrid%20Electric-Tracked%20Vehicles&rft.jtitle=IEEE%20journal%20of%20emerging%20and%20selected%20topics%20in%20power%20electronics&rft.au=Han,%20Ruoyan&rft.date=2023-02-01&rft.volume=11&rft.issue=1&rft.spage=19&rft.epage=31&rft.pages=19-31&rft.issn=2168-6777&rft.eissn=2168-6785&rft.coden=IJESN2&rft_id=info:doi/10.1109/JESTPE.2021.3135059&rft_dat=%3Cproquest_RIE%3E2773456232%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2773456232&rft_id=info:pmid/&rft_ieee_id=9648197&rfr_iscdi=true |