Spectral energy model-driven inversion of XCO2 in IPDA lidar remote sensing

Carbon observation satellites based on passive theory (e.g., OCO-2/3, GOSAT-1/2, and TanSat) have relatively high carbon dioxide column concentration (XCO 2 ) accuracy when the observation conditions are met. Passive satellites have data bias and coverage deficiencies due to cloud cover, low albedo,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2023-01, Vol.61, p.1-1
Hauptverfasser: Zhang, Haowei, Han, Ge, Ma, Xin, Li, Siwei, Xu, Hao, Shi, Tianqi, Yuan, Jianye, Zhong, Wanqin, Peng, Yanran, Xu, Jingjing, Gong, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 61
creator Zhang, Haowei
Han, Ge
Ma, Xin
Li, Siwei
Xu, Hao
Shi, Tianqi
Yuan, Jianye
Zhong, Wanqin
Peng, Yanran
Xu, Jingjing
Gong, Wei
description Carbon observation satellites based on passive theory (e.g., OCO-2/3, GOSAT-1/2, and TanSat) have relatively high carbon dioxide column concentration (XCO 2 ) accuracy when the observation conditions are met. Passive satellites have data bias and coverage deficiencies due to cloud cover, low albedo, low light conditions, and aerosol scattering, resulting in carbon observation satellites based on passive theory that cannot meet the demand for high-precision, all-day, all-weather XCO 2 monitoring. Active detection satellites are urgently needed to support global carbon sources, sinks, and carbon neutrality. China intends to launch a sensor satellite with active detection of XCO 2 in the coming years. In this work, based on the satellite's scaled-down airborne experiments, a spectral energy model was developed to optimize the conventional inversion algorithm and achieve a more accurate XCO 2 inversion. The 1.572 μm IPDA lidar column length is used indirectly to evaluate the accuracy of the spectral energy model for signal extraction. And the experimental results show that the accuracy of the signal extracted by the 1.572 μm IPDA lidar column length is 0.74 and 6.20 m at sea and on land based on the indirect evaluation of the length of the 1.572 μm IPDA lidar column length. The optimized XCO 2 was evaluated (standard deviation as an evaluation metric) and its XCO 2 standard deviation reduced by 31%, 63% and 66% in the ocean, plains and mountains, respectively. Our algorithm can obtain the XCO 2 with a consistent trend by using XCO 2 from the OCO-2 satellite as a reference. The calculated XCO 2 is more accurate in areas dominated by anthropogenic factors (plains), owing to the accuracy of the IPDA detection mechanism. This algorithm improves the accuracy and robustness of XCO 2 inversion and has important reference significance for the IPDA lidar carried by China's satellites to be launched in this year.
doi_str_mv 10.1109/TGRS.2023.3238117
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2773454449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10021665</ieee_id><sourcerecordid>2773454449</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-4971000f6d500c69fe4f114d0bf60e0053949ea21c0c0b88cfb00bdb820107b3</originalsourceid><addsrcrecordid>eNotjUtLw0AURgdRsFZ_gOBiwHXqvfPKzLJUrcVCxXbhLuRxp0xJkzpJC_33Burqg4_DOYw9IkwQwb1s5t_riQAhJ1JIi5hesRFqbRMwSl2zEaAzibBO3LK7rtsBoNKYjtjn-kBlH_OaU0Nxe-b7tqI6qWI4UcNDc6LYhbbhrec_s5UYHr74ep3yOlR55JH2bU-8o6YLzfae3fi87ujhf8ds8_62mX0ky9V8MZsukxKt6BPlUgQAbyoNUBrnSXlEVUHhDRCAlk45ygWWUEJhbekLgKIqrACEtJBj9nzRHmL7e6Suz3btMTZDMRNpKpVWSrmBerpQgYiyQwz7PJ6zISzQGC3_ADzGVuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773454449</pqid></control><display><type>article</type><title>Spectral energy model-driven inversion of XCO2 in IPDA lidar remote sensing</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Haowei ; Han, Ge ; Ma, Xin ; Li, Siwei ; Xu, Hao ; Shi, Tianqi ; Yuan, Jianye ; Zhong, Wanqin ; Peng, Yanran ; Xu, Jingjing ; Gong, Wei</creator><creatorcontrib>Zhang, Haowei ; Han, Ge ; Ma, Xin ; Li, Siwei ; Xu, Hao ; Shi, Tianqi ; Yuan, Jianye ; Zhong, Wanqin ; Peng, Yanran ; Xu, Jingjing ; Gong, Wei</creatorcontrib><description>Carbon observation satellites based on passive theory (e.g., OCO-2/3, GOSAT-1/2, and TanSat) have relatively high carbon dioxide column concentration (XCO 2 ) accuracy when the observation conditions are met. Passive satellites have data bias and coverage deficiencies due to cloud cover, low albedo, low light conditions, and aerosol scattering, resulting in carbon observation satellites based on passive theory that cannot meet the demand for high-precision, all-day, all-weather XCO 2 monitoring. Active detection satellites are urgently needed to support global carbon sources, sinks, and carbon neutrality. China intends to launch a sensor satellite with active detection of XCO 2 in the coming years. In this work, based on the satellite's scaled-down airborne experiments, a spectral energy model was developed to optimize the conventional inversion algorithm and achieve a more accurate XCO 2 inversion. The 1.572 μm IPDA lidar column length is used indirectly to evaluate the accuracy of the spectral energy model for signal extraction. And the experimental results show that the accuracy of the signal extracted by the 1.572 μm IPDA lidar column length is 0.74 and 6.20 m at sea and on land based on the indirect evaluation of the length of the 1.572 μm IPDA lidar column length. The optimized XCO 2 was evaluated (standard deviation as an evaluation metric) and its XCO 2 standard deviation reduced by 31%, 63% and 66% in the ocean, plains and mountains, respectively. Our algorithm can obtain the XCO 2 with a consistent trend by using XCO 2 from the OCO-2 satellite as a reference. The calculated XCO 2 is more accurate in areas dominated by anthropogenic factors (plains), owing to the accuracy of the IPDA detection mechanism. This algorithm improves the accuracy and robustness of XCO 2 inversion and has important reference significance for the IPDA lidar carried by China's satellites to be launched in this year.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3238117</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Absorption ; Accuracy ; Active monitoring ; Active satellites ; Albedo ; Algorithms ; Anthropogenic factors ; Atmospheric modeling ; Carbon ; Carbon dioxide ; Carbon dioxide concentration ; Carbon sources ; Cloud cover ; Data models ; Detection ; Energy ; Inversion ; IPDA ; Laser radar ; Lidar ; Mathematical models ; Mountains ; Optimization ; Passive satellites ; Remote observing ; Remote sensing ; Satellite observation ; Satellites ; Standard deviation ; XCO&lt;sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;2</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c182t-4971000f6d500c69fe4f114d0bf60e0053949ea21c0c0b88cfb00bdb820107b3</citedby><orcidid>0000-0002-2660-6794 ; 0000-0003-2561-3244 ; 0000-0003-4815-4175 ; 0000-0002-0969-2838 ; 0000-0002-9347-092X ; 0000-0002-2276-8024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10021665$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10021665$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Haowei</creatorcontrib><creatorcontrib>Han, Ge</creatorcontrib><creatorcontrib>Ma, Xin</creatorcontrib><creatorcontrib>Li, Siwei</creatorcontrib><creatorcontrib>Xu, Hao</creatorcontrib><creatorcontrib>Shi, Tianqi</creatorcontrib><creatorcontrib>Yuan, Jianye</creatorcontrib><creatorcontrib>Zhong, Wanqin</creatorcontrib><creatorcontrib>Peng, Yanran</creatorcontrib><creatorcontrib>Xu, Jingjing</creatorcontrib><creatorcontrib>Gong, Wei</creatorcontrib><title>Spectral energy model-driven inversion of XCO2 in IPDA lidar remote sensing</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Carbon observation satellites based on passive theory (e.g., OCO-2/3, GOSAT-1/2, and TanSat) have relatively high carbon dioxide column concentration (XCO 2 ) accuracy when the observation conditions are met. Passive satellites have data bias and coverage deficiencies due to cloud cover, low albedo, low light conditions, and aerosol scattering, resulting in carbon observation satellites based on passive theory that cannot meet the demand for high-precision, all-day, all-weather XCO 2 monitoring. Active detection satellites are urgently needed to support global carbon sources, sinks, and carbon neutrality. China intends to launch a sensor satellite with active detection of XCO 2 in the coming years. In this work, based on the satellite's scaled-down airborne experiments, a spectral energy model was developed to optimize the conventional inversion algorithm and achieve a more accurate XCO 2 inversion. The 1.572 μm IPDA lidar column length is used indirectly to evaluate the accuracy of the spectral energy model for signal extraction. And the experimental results show that the accuracy of the signal extracted by the 1.572 μm IPDA lidar column length is 0.74 and 6.20 m at sea and on land based on the indirect evaluation of the length of the 1.572 μm IPDA lidar column length. The optimized XCO 2 was evaluated (standard deviation as an evaluation metric) and its XCO 2 standard deviation reduced by 31%, 63% and 66% in the ocean, plains and mountains, respectively. Our algorithm can obtain the XCO 2 with a consistent trend by using XCO 2 from the OCO-2 satellite as a reference. The calculated XCO 2 is more accurate in areas dominated by anthropogenic factors (plains), owing to the accuracy of the IPDA detection mechanism. This algorithm improves the accuracy and robustness of XCO 2 inversion and has important reference significance for the IPDA lidar carried by China's satellites to be launched in this year.</description><subject>Absorption</subject><subject>Accuracy</subject><subject>Active monitoring</subject><subject>Active satellites</subject><subject>Albedo</subject><subject>Algorithms</subject><subject>Anthropogenic factors</subject><subject>Atmospheric modeling</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide concentration</subject><subject>Carbon sources</subject><subject>Cloud cover</subject><subject>Data models</subject><subject>Detection</subject><subject>Energy</subject><subject>Inversion</subject><subject>IPDA</subject><subject>Laser radar</subject><subject>Lidar</subject><subject>Mathematical models</subject><subject>Mountains</subject><subject>Optimization</subject><subject>Passive satellites</subject><subject>Remote observing</subject><subject>Remote sensing</subject><subject>Satellite observation</subject><subject>Satellites</subject><subject>Standard deviation</subject><subject>XCO&lt;sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;2</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotjUtLw0AURgdRsFZ_gOBiwHXqvfPKzLJUrcVCxXbhLuRxp0xJkzpJC_33Burqg4_DOYw9IkwQwb1s5t_riQAhJ1JIi5hesRFqbRMwSl2zEaAzibBO3LK7rtsBoNKYjtjn-kBlH_OaU0Nxe-b7tqI6qWI4UcNDc6LYhbbhrec_s5UYHr74ep3yOlR55JH2bU-8o6YLzfae3fi87ujhf8ds8_62mX0ky9V8MZsukxKt6BPlUgQAbyoNUBrnSXlEVUHhDRCAlk45ygWWUEJhbekLgKIqrACEtJBj9nzRHmL7e6Suz3btMTZDMRNpKpVWSrmBerpQgYiyQwz7PJ6zISzQGC3_ADzGVuQ</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Zhang, Haowei</creator><creator>Han, Ge</creator><creator>Ma, Xin</creator><creator>Li, Siwei</creator><creator>Xu, Hao</creator><creator>Shi, Tianqi</creator><creator>Yuan, Jianye</creator><creator>Zhong, Wanqin</creator><creator>Peng, Yanran</creator><creator>Xu, Jingjing</creator><creator>Gong, Wei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2660-6794</orcidid><orcidid>https://orcid.org/0000-0003-2561-3244</orcidid><orcidid>https://orcid.org/0000-0003-4815-4175</orcidid><orcidid>https://orcid.org/0000-0002-0969-2838</orcidid><orcidid>https://orcid.org/0000-0002-9347-092X</orcidid><orcidid>https://orcid.org/0000-0002-2276-8024</orcidid></search><sort><creationdate>20230101</creationdate><title>Spectral energy model-driven inversion of XCO2 in IPDA lidar remote sensing</title><author>Zhang, Haowei ; Han, Ge ; Ma, Xin ; Li, Siwei ; Xu, Hao ; Shi, Tianqi ; Yuan, Jianye ; Zhong, Wanqin ; Peng, Yanran ; Xu, Jingjing ; Gong, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-4971000f6d500c69fe4f114d0bf60e0053949ea21c0c0b88cfb00bdb820107b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorption</topic><topic>Accuracy</topic><topic>Active monitoring</topic><topic>Active satellites</topic><topic>Albedo</topic><topic>Algorithms</topic><topic>Anthropogenic factors</topic><topic>Atmospheric modeling</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide concentration</topic><topic>Carbon sources</topic><topic>Cloud cover</topic><topic>Data models</topic><topic>Detection</topic><topic>Energy</topic><topic>Inversion</topic><topic>IPDA</topic><topic>Laser radar</topic><topic>Lidar</topic><topic>Mathematical models</topic><topic>Mountains</topic><topic>Optimization</topic><topic>Passive satellites</topic><topic>Remote observing</topic><topic>Remote sensing</topic><topic>Satellite observation</topic><topic>Satellites</topic><topic>Standard deviation</topic><topic>XCO&lt;sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Haowei</creatorcontrib><creatorcontrib>Han, Ge</creatorcontrib><creatorcontrib>Ma, Xin</creatorcontrib><creatorcontrib>Li, Siwei</creatorcontrib><creatorcontrib>Xu, Hao</creatorcontrib><creatorcontrib>Shi, Tianqi</creatorcontrib><creatorcontrib>Yuan, Jianye</creatorcontrib><creatorcontrib>Zhong, Wanqin</creatorcontrib><creatorcontrib>Peng, Yanran</creatorcontrib><creatorcontrib>Xu, Jingjing</creatorcontrib><creatorcontrib>Gong, Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Haowei</au><au>Han, Ge</au><au>Ma, Xin</au><au>Li, Siwei</au><au>Xu, Hao</au><au>Shi, Tianqi</au><au>Yuan, Jianye</au><au>Zhong, Wanqin</au><au>Peng, Yanran</au><au>Xu, Jingjing</au><au>Gong, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral energy model-driven inversion of XCO2 in IPDA lidar remote sensing</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>61</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Carbon observation satellites based on passive theory (e.g., OCO-2/3, GOSAT-1/2, and TanSat) have relatively high carbon dioxide column concentration (XCO 2 ) accuracy when the observation conditions are met. Passive satellites have data bias and coverage deficiencies due to cloud cover, low albedo, low light conditions, and aerosol scattering, resulting in carbon observation satellites based on passive theory that cannot meet the demand for high-precision, all-day, all-weather XCO 2 monitoring. Active detection satellites are urgently needed to support global carbon sources, sinks, and carbon neutrality. China intends to launch a sensor satellite with active detection of XCO 2 in the coming years. In this work, based on the satellite's scaled-down airborne experiments, a spectral energy model was developed to optimize the conventional inversion algorithm and achieve a more accurate XCO 2 inversion. The 1.572 μm IPDA lidar column length is used indirectly to evaluate the accuracy of the spectral energy model for signal extraction. And the experimental results show that the accuracy of the signal extracted by the 1.572 μm IPDA lidar column length is 0.74 and 6.20 m at sea and on land based on the indirect evaluation of the length of the 1.572 μm IPDA lidar column length. The optimized XCO 2 was evaluated (standard deviation as an evaluation metric) and its XCO 2 standard deviation reduced by 31%, 63% and 66% in the ocean, plains and mountains, respectively. Our algorithm can obtain the XCO 2 with a consistent trend by using XCO 2 from the OCO-2 satellite as a reference. The calculated XCO 2 is more accurate in areas dominated by anthropogenic factors (plains), owing to the accuracy of the IPDA detection mechanism. This algorithm improves the accuracy and robustness of XCO 2 inversion and has important reference significance for the IPDA lidar carried by China's satellites to be launched in this year.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3238117</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2660-6794</orcidid><orcidid>https://orcid.org/0000-0003-2561-3244</orcidid><orcidid>https://orcid.org/0000-0003-4815-4175</orcidid><orcidid>https://orcid.org/0000-0002-0969-2838</orcidid><orcidid>https://orcid.org/0000-0002-9347-092X</orcidid><orcidid>https://orcid.org/0000-0002-2276-8024</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_journals_2773454449
source IEEE Electronic Library (IEL)
subjects Absorption
Accuracy
Active monitoring
Active satellites
Albedo
Algorithms
Anthropogenic factors
Atmospheric modeling
Carbon
Carbon dioxide
Carbon dioxide concentration
Carbon sources
Cloud cover
Data models
Detection
Energy
Inversion
IPDA
Laser radar
Lidar
Mathematical models
Mountains
Optimization
Passive satellites
Remote observing
Remote sensing
Satellite observation
Satellites
Standard deviation
XCO<sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">2
title Spectral energy model-driven inversion of XCO2 in IPDA lidar remote sensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A00%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20energy%20model-driven%20inversion%20of%20XCO2%20in%20IPDA%20lidar%20remote%20sensing&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Zhang,%20Haowei&rft.date=2023-01-01&rft.volume=61&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3238117&rft_dat=%3Cproquest_RIE%3E2773454449%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2773454449&rft_id=info:pmid/&rft_ieee_id=10021665&rfr_iscdi=true