On the Statistical Significance of a Community Structure

The community structure typically refers to the existence of a network partition in terms of a set of non-overlapping dense sub-graphs, where each sub-graph is called a community and there are few links between different communities. The detection of community structure is able to provide additional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2023-03, Vol.35 (3), p.2887-2900
Hauptverfasser: He, Zengyou, Wei, Xiaoqi, Chen, Wenfang, Liu, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2900
container_issue 3
container_start_page 2887
container_title IEEE transactions on knowledge and data engineering
container_volume 35
creator He, Zengyou
Wei, Xiaoqi
Chen, Wenfang
Liu, Yan
description The community structure typically refers to the existence of a network partition in terms of a set of non-overlapping dense sub-graphs, where each sub-graph is called a community and there are few links between different communities. The detection of community structure is able to provide additional knowledge on the organization mechanism of the network and its characteristics. Despite decades of developments in community detection algorithms, how to determine whether a given community structure is true or not in a statistically sound manner still remains unresolved. In this paper, we derive an analytical upper bound on the p p -value of a community structure under the configuration model. To demonstrate its effectiveness on community structure validation, we further develop a community detection algorithm in which the p p -value upper bound is used as the objective function. Experimental results on both real networks and simulated networks show that our algorithm outperforms prior state-of-the-art community detection methods.
doi_str_mv 10.1109/TKDE.2021.3125330
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2773453406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9606604</ieee_id><sourcerecordid>2773453406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-59f33e98523598c8e078c0519405a60dc722c0386c442f7c5965ce9b081467353</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwAYhNJNYpM357iUp5iEpdtKytYBxw1STFdhb9exK1YjV3ce4d6RByizBDBPOweX9azChQnDGkgjE4IxMUQpcUDZ4PGTiWnHF1Sa5S2gKAVhonRK_aIv_4Yp2rHFIOrtoV6_DdhnqIrfNFVxdVMe-apm9DPgxc7F3uo78mF3W1S_7mdKfk43mxmb-Wy9XL2_xxWTqqdS6FqRnzRgvKhNFOe1DagUDDQVQSvpyi1AHT0nFOa-WEkcJ58wkauVRMsCm5P-7uY_fb-5TttutjO7y0VCnGBeMgBwqPlItdStHXdh9DU8WDRbCjIDsKsqMgexI0dO6OneC9_-eNBCmBsz-QwV6l</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773453406</pqid></control><display><type>article</type><title>On the Statistical Significance of a Community Structure</title><source>IEEE Electronic Library (IEL)</source><creator>He, Zengyou ; Wei, Xiaoqi ; Chen, Wenfang ; Liu, Yan</creator><creatorcontrib>He, Zengyou ; Wei, Xiaoqi ; Chen, Wenfang ; Liu, Yan</creatorcontrib><description><![CDATA[The community structure typically refers to the existence of a network partition in terms of a set of non-overlapping dense sub-graphs, where each sub-graph is called a community and there are few links between different communities. The detection of community structure is able to provide additional knowledge on the organization mechanism of the network and its characteristics. Despite decades of developments in community detection algorithms, how to determine whether a given community structure is true or not in a statistically sound manner still remains unresolved. In this paper, we derive an analytical upper bound on the <inline-formula><tex-math notation="LaTeX">p</tex-math> <mml:math><mml:mi>p</mml:mi></mml:math><inline-graphic xlink:href="he-ieq1-3125330.gif"/> </inline-formula>-value of a community structure under the configuration model. To demonstrate its effectiveness on community structure validation, we further develop a community detection algorithm in which the <inline-formula><tex-math notation="LaTeX">p</tex-math> <mml:math><mml:mi>p</mml:mi></mml:math><inline-graphic xlink:href="he-ieq2-3125330.gif"/> </inline-formula>-value upper bound is used as the objective function. Experimental results on both real networks and simulated networks show that our algorithm outperforms prior state-of-the-art community detection methods.]]></description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2021.3125330</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Analytical models ; Community detection ; Detection algorithms ; Indexes ; Linear programming ; Measurement ; network partition ; random graphs ; Sampling methods ; Statistical methods ; Statistical significance ; Upper bound ; Upper bounds</subject><ispartof>IEEE transactions on knowledge and data engineering, 2023-03, Vol.35 (3), p.2887-2900</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c288t-59f33e98523598c8e078c0519405a60dc722c0386c442f7c5965ce9b081467353</cites><orcidid>0000-0001-9526-8816 ; 0000-0002-1386-812X ; 0000-0003-2257-063X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9606604$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9606604$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>He, Zengyou</creatorcontrib><creatorcontrib>Wei, Xiaoqi</creatorcontrib><creatorcontrib>Chen, Wenfang</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><title>On the Statistical Significance of a Community Structure</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description><![CDATA[The community structure typically refers to the existence of a network partition in terms of a set of non-overlapping dense sub-graphs, where each sub-graph is called a community and there are few links between different communities. The detection of community structure is able to provide additional knowledge on the organization mechanism of the network and its characteristics. Despite decades of developments in community detection algorithms, how to determine whether a given community structure is true or not in a statistically sound manner still remains unresolved. In this paper, we derive an analytical upper bound on the <inline-formula><tex-math notation="LaTeX">p</tex-math> <mml:math><mml:mi>p</mml:mi></mml:math><inline-graphic xlink:href="he-ieq1-3125330.gif"/> </inline-formula>-value of a community structure under the configuration model. To demonstrate its effectiveness on community structure validation, we further develop a community detection algorithm in which the <inline-formula><tex-math notation="LaTeX">p</tex-math> <mml:math><mml:mi>p</mml:mi></mml:math><inline-graphic xlink:href="he-ieq2-3125330.gif"/> </inline-formula>-value upper bound is used as the objective function. Experimental results on both real networks and simulated networks show that our algorithm outperforms prior state-of-the-art community detection methods.]]></description><subject>Algorithms</subject><subject>Analytical models</subject><subject>Community detection</subject><subject>Detection algorithms</subject><subject>Indexes</subject><subject>Linear programming</subject><subject>Measurement</subject><subject>network partition</subject><subject>random graphs</subject><subject>Sampling methods</subject><subject>Statistical methods</subject><subject>Statistical significance</subject><subject>Upper bound</subject><subject>Upper bounds</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwAYhNJNYpM357iUp5iEpdtKytYBxw1STFdhb9exK1YjV3ce4d6RByizBDBPOweX9azChQnDGkgjE4IxMUQpcUDZ4PGTiWnHF1Sa5S2gKAVhonRK_aIv_4Yp2rHFIOrtoV6_DdhnqIrfNFVxdVMe-apm9DPgxc7F3uo78mF3W1S_7mdKfk43mxmb-Wy9XL2_xxWTqqdS6FqRnzRgvKhNFOe1DagUDDQVQSvpyi1AHT0nFOa-WEkcJ58wkauVRMsCm5P-7uY_fb-5TttutjO7y0VCnGBeMgBwqPlItdStHXdh9DU8WDRbCjIDsKsqMgexI0dO6OneC9_-eNBCmBsz-QwV6l</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>He, Zengyou</creator><creator>Wei, Xiaoqi</creator><creator>Chen, Wenfang</creator><creator>Liu, Yan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9526-8816</orcidid><orcidid>https://orcid.org/0000-0002-1386-812X</orcidid><orcidid>https://orcid.org/0000-0003-2257-063X</orcidid></search><sort><creationdate>20230301</creationdate><title>On the Statistical Significance of a Community Structure</title><author>He, Zengyou ; Wei, Xiaoqi ; Chen, Wenfang ; Liu, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-59f33e98523598c8e078c0519405a60dc722c0386c442f7c5965ce9b081467353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Analytical models</topic><topic>Community detection</topic><topic>Detection algorithms</topic><topic>Indexes</topic><topic>Linear programming</topic><topic>Measurement</topic><topic>network partition</topic><topic>random graphs</topic><topic>Sampling methods</topic><topic>Statistical methods</topic><topic>Statistical significance</topic><topic>Upper bound</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Zengyou</creatorcontrib><creatorcontrib>Wei, Xiaoqi</creatorcontrib><creatorcontrib>Chen, Wenfang</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>He, Zengyou</au><au>Wei, Xiaoqi</au><au>Chen, Wenfang</au><au>Liu, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Statistical Significance of a Community Structure</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>35</volume><issue>3</issue><spage>2887</spage><epage>2900</epage><pages>2887-2900</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract><![CDATA[The community structure typically refers to the existence of a network partition in terms of a set of non-overlapping dense sub-graphs, where each sub-graph is called a community and there are few links between different communities. The detection of community structure is able to provide additional knowledge on the organization mechanism of the network and its characteristics. Despite decades of developments in community detection algorithms, how to determine whether a given community structure is true or not in a statistically sound manner still remains unresolved. In this paper, we derive an analytical upper bound on the <inline-formula><tex-math notation="LaTeX">p</tex-math> <mml:math><mml:mi>p</mml:mi></mml:math><inline-graphic xlink:href="he-ieq1-3125330.gif"/> </inline-formula>-value of a community structure under the configuration model. To demonstrate its effectiveness on community structure validation, we further develop a community detection algorithm in which the <inline-formula><tex-math notation="LaTeX">p</tex-math> <mml:math><mml:mi>p</mml:mi></mml:math><inline-graphic xlink:href="he-ieq2-3125330.gif"/> </inline-formula>-value upper bound is used as the objective function. Experimental results on both real networks and simulated networks show that our algorithm outperforms prior state-of-the-art community detection methods.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2021.3125330</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9526-8816</orcidid><orcidid>https://orcid.org/0000-0002-1386-812X</orcidid><orcidid>https://orcid.org/0000-0003-2257-063X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2023-03, Vol.35 (3), p.2887-2900
issn 1041-4347
1558-2191
language eng
recordid cdi_proquest_journals_2773453406
source IEEE Electronic Library (IEL)
subjects Algorithms
Analytical models
Community detection
Detection algorithms
Indexes
Linear programming
Measurement
network partition
random graphs
Sampling methods
Statistical methods
Statistical significance
Upper bound
Upper bounds
title On the Statistical Significance of a Community Structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A51%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Statistical%20Significance%20of%20a%20Community%20Structure&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=He,%20Zengyou&rft.date=2023-03-01&rft.volume=35&rft.issue=3&rft.spage=2887&rft.epage=2900&rft.pages=2887-2900&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2021.3125330&rft_dat=%3Cproquest_RIE%3E2773453406%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2773453406&rft_id=info:pmid/&rft_ieee_id=9606604&rfr_iscdi=true