Lifelong Visual-Tactile Spectral Clustering for Robotic Object Perception

This work presents a novel visual-tactile fused clustering framework, called L ifelong V isual- T actile S pectral C lustering (i.e., LVTSC), to effectively learn consecutive object clustering tasks for robotic perception. Lifelong learning has become an important and hot topic in recent studies on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems for video technology 2023-02, Vol.33 (2), p.818-829
Hauptverfasser: Liu, Yuyang, Cong, Yang, Sun, Gan, Ding, Zhengming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 829
container_issue 2
container_start_page 818
container_title IEEE transactions on circuits and systems for video technology
container_volume 33
creator Liu, Yuyang
Cong, Yang
Sun, Gan
Ding, Zhengming
description This work presents a novel visual-tactile fused clustering framework, called L ifelong V isual- T actile S pectral C lustering (i.e., LVTSC), to effectively learn consecutive object clustering tasks for robotic perception. Lifelong learning has become an important and hot topic in recent studies on machine learning, aiming to imitate "human learning" and reduce the computational cost when consecutively learning new tasks. Our proposed LVTSC model explores the knowledge transfer and representation correlation from a local modality-invariant perspective under modality-consistent constraint guidance. For the modality-invariant part, we design a set of modality-invariant basis libraries to capture the latent clustering centers of each modality and a set of modality-invariant feature libraries to forcibly embed the manifold information of each modality. A modal-consistent constraint reinforces the correlation between visual and tactile modalities by maximizing the feature manifold correspondences. When the object clustering task comes continuously, the overall objective is optimized by an effective alternating direction method with guaranteed convergence. Our proposed LVTSC framework has been extensively validated for its effectiveness and efficiency on the three challenging real-world robotic object perception datasets.
doi_str_mv 10.1109/TCSVT.2022.3206865
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2773449549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9893176</ieee_id><sourcerecordid>2773449549</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-582e241b77e1ebf765f2b4abbf39268e8a316c1d79811a4bdb990b7f1813dcd13</originalsourceid><addsrcrecordid>eNo9kD1PwzAQQCMEEqXwB2CJxJzis-PYHlHER6VKRTR0jWznjFyFJtjJwL8npRXT3fDenfSS5BbIAoCoh6rcbKsFJZQuGCWFLPhZMgPOZUYp4efTTjhkkgK_TK5i3BECuczFLFmuvMO223-mWx9H3WaVtoNvMd30aIeg27Rsxzhg8BPiupC-d6YbvE3XZjcB6RsGi_3gu_11cuF0G_HmNOfJx_NTVb5mq_XLsnxcZZYqPmRcUqQ5GCEQ0DhRcEdNro1xTNFCotQMCguNUBJA56YxShEjHEhgjW2AzZP7490-dN8jxqHedWPYTy9rKgTLc8VzNVH0SNnQxRjQ1X3wXzr81EDqQ7L6L1l9SFafkk3S3VHyiPgvKKkYiIL9AtsRZ-4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773449549</pqid></control><display><type>article</type><title>Lifelong Visual-Tactile Spectral Clustering for Robotic Object Perception</title><source>IEL</source><creator>Liu, Yuyang ; Cong, Yang ; Sun, Gan ; Ding, Zhengming</creator><creatorcontrib>Liu, Yuyang ; Cong, Yang ; Sun, Gan ; Ding, Zhengming</creatorcontrib><description>This work presents a novel visual-tactile fused clustering framework, called L ifelong V isual- T actile S pectral C lustering (i.e., LVTSC), to effectively learn consecutive object clustering tasks for robotic perception. Lifelong learning has become an important and hot topic in recent studies on machine learning, aiming to imitate "human learning" and reduce the computational cost when consecutively learning new tasks. Our proposed LVTSC model explores the knowledge transfer and representation correlation from a local modality-invariant perspective under modality-consistent constraint guidance. For the modality-invariant part, we design a set of modality-invariant basis libraries to capture the latent clustering centers of each modality and a set of modality-invariant feature libraries to forcibly embed the manifold information of each modality. A modal-consistent constraint reinforces the correlation between visual and tactile modalities by maximizing the feature manifold correspondences. When the object clustering task comes continuously, the overall objective is optimized by an effective alternating direction method with guaranteed convergence. Our proposed LVTSC framework has been extensively validated for its effectiveness and efficiency on the three challenging real-world robotic object perception datasets.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2022.3206865</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Clustering ; Computational modeling ; Correlation ; Invariants ; Knowledge management ; Knowledge representation ; Libraries ; Lifelong learning ; Machine learning ; Manifolds ; modality-consistent and modality-invariant ; Perception ; Robotics ; Robots ; spectral clustering ; Task analysis ; visual-tactile fusion ; Visualization</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2023-02, Vol.33 (2), p.818-829</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-582e241b77e1ebf765f2b4abbf39268e8a316c1d79811a4bdb990b7f1813dcd13</citedby><cites>FETCH-LOGICAL-c295t-582e241b77e1ebf765f2b4abbf39268e8a316c1d79811a4bdb990b7f1813dcd13</cites><orcidid>0000-0003-1111-6909 ; 0000-0002-6994-5278 ; 0000-0002-5102-0189 ; 0000-0002-3697-6561</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9893176$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9893176$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Yuyang</creatorcontrib><creatorcontrib>Cong, Yang</creatorcontrib><creatorcontrib>Sun, Gan</creatorcontrib><creatorcontrib>Ding, Zhengming</creatorcontrib><title>Lifelong Visual-Tactile Spectral Clustering for Robotic Object Perception</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>This work presents a novel visual-tactile fused clustering framework, called L ifelong V isual- T actile S pectral C lustering (i.e., LVTSC), to effectively learn consecutive object clustering tasks for robotic perception. Lifelong learning has become an important and hot topic in recent studies on machine learning, aiming to imitate "human learning" and reduce the computational cost when consecutively learning new tasks. Our proposed LVTSC model explores the knowledge transfer and representation correlation from a local modality-invariant perspective under modality-consistent constraint guidance. For the modality-invariant part, we design a set of modality-invariant basis libraries to capture the latent clustering centers of each modality and a set of modality-invariant feature libraries to forcibly embed the manifold information of each modality. A modal-consistent constraint reinforces the correlation between visual and tactile modalities by maximizing the feature manifold correspondences. When the object clustering task comes continuously, the overall objective is optimized by an effective alternating direction method with guaranteed convergence. Our proposed LVTSC framework has been extensively validated for its effectiveness and efficiency on the three challenging real-world robotic object perception datasets.</description><subject>Clustering</subject><subject>Computational modeling</subject><subject>Correlation</subject><subject>Invariants</subject><subject>Knowledge management</subject><subject>Knowledge representation</subject><subject>Libraries</subject><subject>Lifelong learning</subject><subject>Machine learning</subject><subject>Manifolds</subject><subject>modality-consistent and modality-invariant</subject><subject>Perception</subject><subject>Robotics</subject><subject>Robots</subject><subject>spectral clustering</subject><subject>Task analysis</subject><subject>visual-tactile fusion</subject><subject>Visualization</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kD1PwzAQQCMEEqXwB2CJxJzis-PYHlHER6VKRTR0jWznjFyFJtjJwL8npRXT3fDenfSS5BbIAoCoh6rcbKsFJZQuGCWFLPhZMgPOZUYp4efTTjhkkgK_TK5i3BECuczFLFmuvMO223-mWx9H3WaVtoNvMd30aIeg27Rsxzhg8BPiupC-d6YbvE3XZjcB6RsGi_3gu_11cuF0G_HmNOfJx_NTVb5mq_XLsnxcZZYqPmRcUqQ5GCEQ0DhRcEdNro1xTNFCotQMCguNUBJA56YxShEjHEhgjW2AzZP7490-dN8jxqHedWPYTy9rKgTLc8VzNVH0SNnQxRjQ1X3wXzr81EDqQ7L6L1l9SFafkk3S3VHyiPgvKKkYiIL9AtsRZ-4</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Liu, Yuyang</creator><creator>Cong, Yang</creator><creator>Sun, Gan</creator><creator>Ding, Zhengming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1111-6909</orcidid><orcidid>https://orcid.org/0000-0002-6994-5278</orcidid><orcidid>https://orcid.org/0000-0002-5102-0189</orcidid><orcidid>https://orcid.org/0000-0002-3697-6561</orcidid></search><sort><creationdate>20230201</creationdate><title>Lifelong Visual-Tactile Spectral Clustering for Robotic Object Perception</title><author>Liu, Yuyang ; Cong, Yang ; Sun, Gan ; Ding, Zhengming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-582e241b77e1ebf765f2b4abbf39268e8a316c1d79811a4bdb990b7f1813dcd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Clustering</topic><topic>Computational modeling</topic><topic>Correlation</topic><topic>Invariants</topic><topic>Knowledge management</topic><topic>Knowledge representation</topic><topic>Libraries</topic><topic>Lifelong learning</topic><topic>Machine learning</topic><topic>Manifolds</topic><topic>modality-consistent and modality-invariant</topic><topic>Perception</topic><topic>Robotics</topic><topic>Robots</topic><topic>spectral clustering</topic><topic>Task analysis</topic><topic>visual-tactile fusion</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yuyang</creatorcontrib><creatorcontrib>Cong, Yang</creatorcontrib><creatorcontrib>Sun, Gan</creatorcontrib><creatorcontrib>Ding, Zhengming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Yuyang</au><au>Cong, Yang</au><au>Sun, Gan</au><au>Ding, Zhengming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lifelong Visual-Tactile Spectral Clustering for Robotic Object Perception</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>33</volume><issue>2</issue><spage>818</spage><epage>829</epage><pages>818-829</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>This work presents a novel visual-tactile fused clustering framework, called L ifelong V isual- T actile S pectral C lustering (i.e., LVTSC), to effectively learn consecutive object clustering tasks for robotic perception. Lifelong learning has become an important and hot topic in recent studies on machine learning, aiming to imitate "human learning" and reduce the computational cost when consecutively learning new tasks. Our proposed LVTSC model explores the knowledge transfer and representation correlation from a local modality-invariant perspective under modality-consistent constraint guidance. For the modality-invariant part, we design a set of modality-invariant basis libraries to capture the latent clustering centers of each modality and a set of modality-invariant feature libraries to forcibly embed the manifold information of each modality. A modal-consistent constraint reinforces the correlation between visual and tactile modalities by maximizing the feature manifold correspondences. When the object clustering task comes continuously, the overall objective is optimized by an effective alternating direction method with guaranteed convergence. Our proposed LVTSC framework has been extensively validated for its effectiveness and efficiency on the three challenging real-world robotic object perception datasets.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2022.3206865</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1111-6909</orcidid><orcidid>https://orcid.org/0000-0002-6994-5278</orcidid><orcidid>https://orcid.org/0000-0002-5102-0189</orcidid><orcidid>https://orcid.org/0000-0002-3697-6561</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 2023-02, Vol.33 (2), p.818-829
issn 1051-8215
1558-2205
language eng
recordid cdi_proquest_journals_2773449549
source IEL
subjects Clustering
Computational modeling
Correlation
Invariants
Knowledge management
Knowledge representation
Libraries
Lifelong learning
Machine learning
Manifolds
modality-consistent and modality-invariant
Perception
Robotics
Robots
spectral clustering
Task analysis
visual-tactile fusion
Visualization
title Lifelong Visual-Tactile Spectral Clustering for Robotic Object Perception
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T15%3A29%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lifelong%20Visual-Tactile%20Spectral%20Clustering%20for%20Robotic%20Object%20Perception&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Liu,%20Yuyang&rft.date=2023-02-01&rft.volume=33&rft.issue=2&rft.spage=818&rft.epage=829&rft.pages=818-829&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2022.3206865&rft_dat=%3Cproquest_RIE%3E2773449549%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2773449549&rft_id=info:pmid/&rft_ieee_id=9893176&rfr_iscdi=true