Lifelong Visual-Tactile Spectral Clustering for Robotic Object Perception
This work presents a novel visual-tactile fused clustering framework, called L ifelong V isual- T actile S pectral C lustering (i.e., LVTSC), to effectively learn consecutive object clustering tasks for robotic perception. Lifelong learning has become an important and hot topic in recent studies on...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems for video technology 2023-02, Vol.33 (2), p.818-829 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 829 |
---|---|
container_issue | 2 |
container_start_page | 818 |
container_title | IEEE transactions on circuits and systems for video technology |
container_volume | 33 |
creator | Liu, Yuyang Cong, Yang Sun, Gan Ding, Zhengming |
description | This work presents a novel visual-tactile fused clustering framework, called L ifelong V isual- T actile S pectral C lustering (i.e., LVTSC), to effectively learn consecutive object clustering tasks for robotic perception. Lifelong learning has become an important and hot topic in recent studies on machine learning, aiming to imitate "human learning" and reduce the computational cost when consecutively learning new tasks. Our proposed LVTSC model explores the knowledge transfer and representation correlation from a local modality-invariant perspective under modality-consistent constraint guidance. For the modality-invariant part, we design a set of modality-invariant basis libraries to capture the latent clustering centers of each modality and a set of modality-invariant feature libraries to forcibly embed the manifold information of each modality. A modal-consistent constraint reinforces the correlation between visual and tactile modalities by maximizing the feature manifold correspondences. When the object clustering task comes continuously, the overall objective is optimized by an effective alternating direction method with guaranteed convergence. Our proposed LVTSC framework has been extensively validated for its effectiveness and efficiency on the three challenging real-world robotic object perception datasets. |
doi_str_mv | 10.1109/TCSVT.2022.3206865 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2773449549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9893176</ieee_id><sourcerecordid>2773449549</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-582e241b77e1ebf765f2b4abbf39268e8a316c1d79811a4bdb990b7f1813dcd13</originalsourceid><addsrcrecordid>eNo9kD1PwzAQQCMEEqXwB2CJxJzis-PYHlHER6VKRTR0jWznjFyFJtjJwL8npRXT3fDenfSS5BbIAoCoh6rcbKsFJZQuGCWFLPhZMgPOZUYp4efTTjhkkgK_TK5i3BECuczFLFmuvMO223-mWx9H3WaVtoNvMd30aIeg27Rsxzhg8BPiupC-d6YbvE3XZjcB6RsGi_3gu_11cuF0G_HmNOfJx_NTVb5mq_XLsnxcZZYqPmRcUqQ5GCEQ0DhRcEdNro1xTNFCotQMCguNUBJA56YxShEjHEhgjW2AzZP7490-dN8jxqHedWPYTy9rKgTLc8VzNVH0SNnQxRjQ1X3wXzr81EDqQ7L6L1l9SFafkk3S3VHyiPgvKKkYiIL9AtsRZ-4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773449549</pqid></control><display><type>article</type><title>Lifelong Visual-Tactile Spectral Clustering for Robotic Object Perception</title><source>IEL</source><creator>Liu, Yuyang ; Cong, Yang ; Sun, Gan ; Ding, Zhengming</creator><creatorcontrib>Liu, Yuyang ; Cong, Yang ; Sun, Gan ; Ding, Zhengming</creatorcontrib><description>This work presents a novel visual-tactile fused clustering framework, called L ifelong V isual- T actile S pectral C lustering (i.e., LVTSC), to effectively learn consecutive object clustering tasks for robotic perception. Lifelong learning has become an important and hot topic in recent studies on machine learning, aiming to imitate "human learning" and reduce the computational cost when consecutively learning new tasks. Our proposed LVTSC model explores the knowledge transfer and representation correlation from a local modality-invariant perspective under modality-consistent constraint guidance. For the modality-invariant part, we design a set of modality-invariant basis libraries to capture the latent clustering centers of each modality and a set of modality-invariant feature libraries to forcibly embed the manifold information of each modality. A modal-consistent constraint reinforces the correlation between visual and tactile modalities by maximizing the feature manifold correspondences. When the object clustering task comes continuously, the overall objective is optimized by an effective alternating direction method with guaranteed convergence. Our proposed LVTSC framework has been extensively validated for its effectiveness and efficiency on the three challenging real-world robotic object perception datasets.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2022.3206865</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Clustering ; Computational modeling ; Correlation ; Invariants ; Knowledge management ; Knowledge representation ; Libraries ; Lifelong learning ; Machine learning ; Manifolds ; modality-consistent and modality-invariant ; Perception ; Robotics ; Robots ; spectral clustering ; Task analysis ; visual-tactile fusion ; Visualization</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2023-02, Vol.33 (2), p.818-829</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-582e241b77e1ebf765f2b4abbf39268e8a316c1d79811a4bdb990b7f1813dcd13</citedby><cites>FETCH-LOGICAL-c295t-582e241b77e1ebf765f2b4abbf39268e8a316c1d79811a4bdb990b7f1813dcd13</cites><orcidid>0000-0003-1111-6909 ; 0000-0002-6994-5278 ; 0000-0002-5102-0189 ; 0000-0002-3697-6561</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9893176$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9893176$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Yuyang</creatorcontrib><creatorcontrib>Cong, Yang</creatorcontrib><creatorcontrib>Sun, Gan</creatorcontrib><creatorcontrib>Ding, Zhengming</creatorcontrib><title>Lifelong Visual-Tactile Spectral Clustering for Robotic Object Perception</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>This work presents a novel visual-tactile fused clustering framework, called L ifelong V isual- T actile S pectral C lustering (i.e., LVTSC), to effectively learn consecutive object clustering tasks for robotic perception. Lifelong learning has become an important and hot topic in recent studies on machine learning, aiming to imitate "human learning" and reduce the computational cost when consecutively learning new tasks. Our proposed LVTSC model explores the knowledge transfer and representation correlation from a local modality-invariant perspective under modality-consistent constraint guidance. For the modality-invariant part, we design a set of modality-invariant basis libraries to capture the latent clustering centers of each modality and a set of modality-invariant feature libraries to forcibly embed the manifold information of each modality. A modal-consistent constraint reinforces the correlation between visual and tactile modalities by maximizing the feature manifold correspondences. When the object clustering task comes continuously, the overall objective is optimized by an effective alternating direction method with guaranteed convergence. Our proposed LVTSC framework has been extensively validated for its effectiveness and efficiency on the three challenging real-world robotic object perception datasets.</description><subject>Clustering</subject><subject>Computational modeling</subject><subject>Correlation</subject><subject>Invariants</subject><subject>Knowledge management</subject><subject>Knowledge representation</subject><subject>Libraries</subject><subject>Lifelong learning</subject><subject>Machine learning</subject><subject>Manifolds</subject><subject>modality-consistent and modality-invariant</subject><subject>Perception</subject><subject>Robotics</subject><subject>Robots</subject><subject>spectral clustering</subject><subject>Task analysis</subject><subject>visual-tactile fusion</subject><subject>Visualization</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kD1PwzAQQCMEEqXwB2CJxJzis-PYHlHER6VKRTR0jWznjFyFJtjJwL8npRXT3fDenfSS5BbIAoCoh6rcbKsFJZQuGCWFLPhZMgPOZUYp4efTTjhkkgK_TK5i3BECuczFLFmuvMO223-mWx9H3WaVtoNvMd30aIeg27Rsxzhg8BPiupC-d6YbvE3XZjcB6RsGi_3gu_11cuF0G_HmNOfJx_NTVb5mq_XLsnxcZZYqPmRcUqQ5GCEQ0DhRcEdNro1xTNFCotQMCguNUBJA56YxShEjHEhgjW2AzZP7490-dN8jxqHedWPYTy9rKgTLc8VzNVH0SNnQxRjQ1X3wXzr81EDqQ7L6L1l9SFafkk3S3VHyiPgvKKkYiIL9AtsRZ-4</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Liu, Yuyang</creator><creator>Cong, Yang</creator><creator>Sun, Gan</creator><creator>Ding, Zhengming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1111-6909</orcidid><orcidid>https://orcid.org/0000-0002-6994-5278</orcidid><orcidid>https://orcid.org/0000-0002-5102-0189</orcidid><orcidid>https://orcid.org/0000-0002-3697-6561</orcidid></search><sort><creationdate>20230201</creationdate><title>Lifelong Visual-Tactile Spectral Clustering for Robotic Object Perception</title><author>Liu, Yuyang ; Cong, Yang ; Sun, Gan ; Ding, Zhengming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-582e241b77e1ebf765f2b4abbf39268e8a316c1d79811a4bdb990b7f1813dcd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Clustering</topic><topic>Computational modeling</topic><topic>Correlation</topic><topic>Invariants</topic><topic>Knowledge management</topic><topic>Knowledge representation</topic><topic>Libraries</topic><topic>Lifelong learning</topic><topic>Machine learning</topic><topic>Manifolds</topic><topic>modality-consistent and modality-invariant</topic><topic>Perception</topic><topic>Robotics</topic><topic>Robots</topic><topic>spectral clustering</topic><topic>Task analysis</topic><topic>visual-tactile fusion</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yuyang</creatorcontrib><creatorcontrib>Cong, Yang</creatorcontrib><creatorcontrib>Sun, Gan</creatorcontrib><creatorcontrib>Ding, Zhengming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Yuyang</au><au>Cong, Yang</au><au>Sun, Gan</au><au>Ding, Zhengming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lifelong Visual-Tactile Spectral Clustering for Robotic Object Perception</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>33</volume><issue>2</issue><spage>818</spage><epage>829</epage><pages>818-829</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>This work presents a novel visual-tactile fused clustering framework, called L ifelong V isual- T actile S pectral C lustering (i.e., LVTSC), to effectively learn consecutive object clustering tasks for robotic perception. Lifelong learning has become an important and hot topic in recent studies on machine learning, aiming to imitate "human learning" and reduce the computational cost when consecutively learning new tasks. Our proposed LVTSC model explores the knowledge transfer and representation correlation from a local modality-invariant perspective under modality-consistent constraint guidance. For the modality-invariant part, we design a set of modality-invariant basis libraries to capture the latent clustering centers of each modality and a set of modality-invariant feature libraries to forcibly embed the manifold information of each modality. A modal-consistent constraint reinforces the correlation between visual and tactile modalities by maximizing the feature manifold correspondences. When the object clustering task comes continuously, the overall objective is optimized by an effective alternating direction method with guaranteed convergence. Our proposed LVTSC framework has been extensively validated for its effectiveness and efficiency on the three challenging real-world robotic object perception datasets.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2022.3206865</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1111-6909</orcidid><orcidid>https://orcid.org/0000-0002-6994-5278</orcidid><orcidid>https://orcid.org/0000-0002-5102-0189</orcidid><orcidid>https://orcid.org/0000-0002-3697-6561</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8215 |
ispartof | IEEE transactions on circuits and systems for video technology, 2023-02, Vol.33 (2), p.818-829 |
issn | 1051-8215 1558-2205 |
language | eng |
recordid | cdi_proquest_journals_2773449549 |
source | IEL |
subjects | Clustering Computational modeling Correlation Invariants Knowledge management Knowledge representation Libraries Lifelong learning Machine learning Manifolds modality-consistent and modality-invariant Perception Robotics Robots spectral clustering Task analysis visual-tactile fusion Visualization |
title | Lifelong Visual-Tactile Spectral Clustering for Robotic Object Perception |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T15%3A29%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lifelong%20Visual-Tactile%20Spectral%20Clustering%20for%20Robotic%20Object%20Perception&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Liu,%20Yuyang&rft.date=2023-02-01&rft.volume=33&rft.issue=2&rft.spage=818&rft.epage=829&rft.pages=818-829&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2022.3206865&rft_dat=%3Cproquest_RIE%3E2773449549%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2773449549&rft_id=info:pmid/&rft_ieee_id=9893176&rfr_iscdi=true |