Stability and sharp decay for 3D incompressible MHD system with fractional horizontal dissipation and magnetic diffusion

This paper aims as the stability and large-time behavior of 3D incompressible magnetohydrodynamic (MHD) equations with fractional horizontal dissipation and magnetic diffusion. By using the energy methods, we obtain that if the initial data are small enough in H 3 ( R 3 ) , then this system possesse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Physik 2023-04, Vol.74 (2), Article 44
Hauptverfasser: Li, Jingna, Wang, Haozhen, Zheng, Dahao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Zeitschrift für angewandte Mathematik und Physik
container_volume 74
creator Li, Jingna
Wang, Haozhen
Zheng, Dahao
description This paper aims as the stability and large-time behavior of 3D incompressible magnetohydrodynamic (MHD) equations with fractional horizontal dissipation and magnetic diffusion. By using the energy methods, we obtain that if the initial data are small enough in H 3 ( R 3 ) , then this system possesses a global solution, and whose horizontal derivatives decay at least at the rate of ( 1 + t ) - 1 2 . Moreover, if we control the initial data further small in H 3 ( R 3 ) ∩ H h - 1 ( R 3 ) , the sharp decay of this solution and its first-order derivatives is established.
doi_str_mv 10.1007/s00033-023-01939-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2773197141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2773197141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-9b1632d91a881065841a839de79b1110b7ef8e915b99fe2cd52d83d674b763dc3</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOI6-gKuA62p-2qZZyow6wogLdR3SJJ3J0DY1yaD16Y1TwZ2Ly73kfOcQDgCXGF1jhNhNQAhRmiGSBnPKs-IIzHBOUMYR5cdghlCeZ4Sw4hSchbBLOMOIzsDnS5S1bW0coew1DFvpB6iNkiNsnId0CW2vXDd4E4KtWwOfVksYxhBNBz9s3MLGSxWt62ULt87bL9fHdGqb8EH-CIfcTm56E61KQtPsQ3o-ByeNbIO5-N1z8HZ_97pYZevnh8fF7TpTtKQx4zUuKdEcy6rCqCyqPF2Ua8OSgjGqmWkqw3FRc94YonRBdEV1yfKalVQrOgdXU-7g3fvehCh2bu_Td4MgjFHMGc5xoshEKe9C8KYRg7ed9KPASPw0LKaGRWpYHBoWRTLRyRQS3G-M_4v-x_UNE7F_kA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773197141</pqid></control><display><type>article</type><title>Stability and sharp decay for 3D incompressible MHD system with fractional horizontal dissipation and magnetic diffusion</title><source>SpringerNature Journals</source><creator>Li, Jingna ; Wang, Haozhen ; Zheng, Dahao</creator><creatorcontrib>Li, Jingna ; Wang, Haozhen ; Zheng, Dahao</creatorcontrib><description>This paper aims as the stability and large-time behavior of 3D incompressible magnetohydrodynamic (MHD) equations with fractional horizontal dissipation and magnetic diffusion. By using the energy methods, we obtain that if the initial data are small enough in H 3 ( R 3 ) , then this system possesses a global solution, and whose horizontal derivatives decay at least at the rate of ( 1 + t ) - 1 2 . Moreover, if we control the initial data further small in H 3 ( R 3 ) ∩ H h - 1 ( R 3 ) , the sharp decay of this solution and its first-order derivatives is established.</description><identifier>ISSN: 0044-2275</identifier><identifier>EISSN: 1420-9039</identifier><identifier>DOI: 10.1007/s00033-023-01939-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Dissipation ; Energy methods ; Engineering ; Fluid flow ; Magnetic diffusion ; Magnetohydrodynamics ; Mathematical Methods in Physics ; Stability ; Theoretical and Applied Mechanics</subject><ispartof>Zeitschrift für angewandte Mathematik und Physik, 2023-04, Vol.74 (2), Article 44</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-9b1632d91a881065841a839de79b1110b7ef8e915b99fe2cd52d83d674b763dc3</citedby><cites>FETCH-LOGICAL-c363t-9b1632d91a881065841a839de79b1110b7ef8e915b99fe2cd52d83d674b763dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00033-023-01939-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00033-023-01939-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Li, Jingna</creatorcontrib><creatorcontrib>Wang, Haozhen</creatorcontrib><creatorcontrib>Zheng, Dahao</creatorcontrib><title>Stability and sharp decay for 3D incompressible MHD system with fractional horizontal dissipation and magnetic diffusion</title><title>Zeitschrift für angewandte Mathematik und Physik</title><addtitle>Z. Angew. Math. Phys</addtitle><description>This paper aims as the stability and large-time behavior of 3D incompressible magnetohydrodynamic (MHD) equations with fractional horizontal dissipation and magnetic diffusion. By using the energy methods, we obtain that if the initial data are small enough in H 3 ( R 3 ) , then this system possesses a global solution, and whose horizontal derivatives decay at least at the rate of ( 1 + t ) - 1 2 . Moreover, if we control the initial data further small in H 3 ( R 3 ) ∩ H h - 1 ( R 3 ) , the sharp decay of this solution and its first-order derivatives is established.</description><subject>Dissipation</subject><subject>Energy methods</subject><subject>Engineering</subject><subject>Fluid flow</subject><subject>Magnetic diffusion</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical Methods in Physics</subject><subject>Stability</subject><subject>Theoretical and Applied Mechanics</subject><issn>0044-2275</issn><issn>1420-9039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAUhYMoOI6-gKuA62p-2qZZyow6wogLdR3SJJ3J0DY1yaD16Y1TwZ2Ly73kfOcQDgCXGF1jhNhNQAhRmiGSBnPKs-IIzHBOUMYR5cdghlCeZ4Sw4hSchbBLOMOIzsDnS5S1bW0coew1DFvpB6iNkiNsnId0CW2vXDd4E4KtWwOfVksYxhBNBz9s3MLGSxWt62ULt87bL9fHdGqb8EH-CIfcTm56E61KQtPsQ3o-ByeNbIO5-N1z8HZ_97pYZevnh8fF7TpTtKQx4zUuKdEcy6rCqCyqPF2Ua8OSgjGqmWkqw3FRc94YonRBdEV1yfKalVQrOgdXU-7g3fvehCh2bu_Td4MgjFHMGc5xoshEKe9C8KYRg7ed9KPASPw0LKaGRWpYHBoWRTLRyRQS3G-M_4v-x_UNE7F_kA</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Li, Jingna</creator><creator>Wang, Haozhen</creator><creator>Zheng, Dahao</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230401</creationdate><title>Stability and sharp decay for 3D incompressible MHD system with fractional horizontal dissipation and magnetic diffusion</title><author>Li, Jingna ; Wang, Haozhen ; Zheng, Dahao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-9b1632d91a881065841a839de79b1110b7ef8e915b99fe2cd52d83d674b763dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Dissipation</topic><topic>Energy methods</topic><topic>Engineering</topic><topic>Fluid flow</topic><topic>Magnetic diffusion</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical Methods in Physics</topic><topic>Stability</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jingna</creatorcontrib><creatorcontrib>Wang, Haozhen</creatorcontrib><creatorcontrib>Zheng, Dahao</creatorcontrib><collection>CrossRef</collection><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jingna</au><au>Wang, Haozhen</au><au>Zheng, Dahao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability and sharp decay for 3D incompressible MHD system with fractional horizontal dissipation and magnetic diffusion</atitle><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle><stitle>Z. Angew. Math. Phys</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>74</volume><issue>2</issue><artnum>44</artnum><issn>0044-2275</issn><eissn>1420-9039</eissn><abstract>This paper aims as the stability and large-time behavior of 3D incompressible magnetohydrodynamic (MHD) equations with fractional horizontal dissipation and magnetic diffusion. By using the energy methods, we obtain that if the initial data are small enough in H 3 ( R 3 ) , then this system possesses a global solution, and whose horizontal derivatives decay at least at the rate of ( 1 + t ) - 1 2 . Moreover, if we control the initial data further small in H 3 ( R 3 ) ∩ H h - 1 ( R 3 ) , the sharp decay of this solution and its first-order derivatives is established.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00033-023-01939-5</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0044-2275
ispartof Zeitschrift für angewandte Mathematik und Physik, 2023-04, Vol.74 (2), Article 44
issn 0044-2275
1420-9039
language eng
recordid cdi_proquest_journals_2773197141
source SpringerNature Journals
subjects Dissipation
Energy methods
Engineering
Fluid flow
Magnetic diffusion
Magnetohydrodynamics
Mathematical Methods in Physics
Stability
Theoretical and Applied Mechanics
title Stability and sharp decay for 3D incompressible MHD system with fractional horizontal dissipation and magnetic diffusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A30%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20and%20sharp%20decay%20for%203D%20incompressible%20MHD%20system%20with%20fractional%20horizontal%20dissipation%20and%20magnetic%20diffusion&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Physik&rft.au=Li,%20Jingna&rft.date=2023-04-01&rft.volume=74&rft.issue=2&rft.artnum=44&rft.issn=0044-2275&rft.eissn=1420-9039&rft_id=info:doi/10.1007/s00033-023-01939-5&rft_dat=%3Cproquest_cross%3E2773197141%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2773197141&rft_id=info:pmid/&rfr_iscdi=true