Stability and sharp decay for 3D incompressible MHD system with fractional horizontal dissipation and magnetic diffusion
This paper aims as the stability and large-time behavior of 3D incompressible magnetohydrodynamic (MHD) equations with fractional horizontal dissipation and magnetic diffusion. By using the energy methods, we obtain that if the initial data are small enough in H 3 ( R 3 ) , then this system possesse...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für angewandte Mathematik und Physik 2023-04, Vol.74 (2), Article 44 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Zeitschrift für angewandte Mathematik und Physik |
container_volume | 74 |
creator | Li, Jingna Wang, Haozhen Zheng, Dahao |
description | This paper aims as the stability and large-time behavior of 3D incompressible magnetohydrodynamic (MHD) equations with fractional horizontal dissipation and magnetic diffusion. By using the energy methods, we obtain that if the initial data are small enough in
H
3
(
R
3
)
, then this system possesses a global solution, and whose horizontal derivatives decay at least at the rate of
(
1
+
t
)
-
1
2
. Moreover, if we control the initial data further small in
H
3
(
R
3
)
∩
H
h
-
1
(
R
3
)
, the sharp decay of this solution and its first-order derivatives is established. |
doi_str_mv | 10.1007/s00033-023-01939-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2773197141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2773197141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-9b1632d91a881065841a839de79b1110b7ef8e915b99fe2cd52d83d674b763dc3</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOI6-gKuA62p-2qZZyow6wogLdR3SJJ3J0DY1yaD16Y1TwZ2Ly73kfOcQDgCXGF1jhNhNQAhRmiGSBnPKs-IIzHBOUMYR5cdghlCeZ4Sw4hSchbBLOMOIzsDnS5S1bW0coew1DFvpB6iNkiNsnId0CW2vXDd4E4KtWwOfVksYxhBNBz9s3MLGSxWt62ULt87bL9fHdGqb8EH-CIfcTm56E61KQtPsQ3o-ByeNbIO5-N1z8HZ_97pYZevnh8fF7TpTtKQx4zUuKdEcy6rCqCyqPF2Ua8OSgjGqmWkqw3FRc94YonRBdEV1yfKalVQrOgdXU-7g3fvehCh2bu_Td4MgjFHMGc5xoshEKe9C8KYRg7ed9KPASPw0LKaGRWpYHBoWRTLRyRQS3G-M_4v-x_UNE7F_kA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773197141</pqid></control><display><type>article</type><title>Stability and sharp decay for 3D incompressible MHD system with fractional horizontal dissipation and magnetic diffusion</title><source>SpringerNature Journals</source><creator>Li, Jingna ; Wang, Haozhen ; Zheng, Dahao</creator><creatorcontrib>Li, Jingna ; Wang, Haozhen ; Zheng, Dahao</creatorcontrib><description>This paper aims as the stability and large-time behavior of 3D incompressible magnetohydrodynamic (MHD) equations with fractional horizontal dissipation and magnetic diffusion. By using the energy methods, we obtain that if the initial data are small enough in
H
3
(
R
3
)
, then this system possesses a global solution, and whose horizontal derivatives decay at least at the rate of
(
1
+
t
)
-
1
2
. Moreover, if we control the initial data further small in
H
3
(
R
3
)
∩
H
h
-
1
(
R
3
)
, the sharp decay of this solution and its first-order derivatives is established.</description><identifier>ISSN: 0044-2275</identifier><identifier>EISSN: 1420-9039</identifier><identifier>DOI: 10.1007/s00033-023-01939-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Dissipation ; Energy methods ; Engineering ; Fluid flow ; Magnetic diffusion ; Magnetohydrodynamics ; Mathematical Methods in Physics ; Stability ; Theoretical and Applied Mechanics</subject><ispartof>Zeitschrift für angewandte Mathematik und Physik, 2023-04, Vol.74 (2), Article 44</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-9b1632d91a881065841a839de79b1110b7ef8e915b99fe2cd52d83d674b763dc3</citedby><cites>FETCH-LOGICAL-c363t-9b1632d91a881065841a839de79b1110b7ef8e915b99fe2cd52d83d674b763dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00033-023-01939-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00033-023-01939-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Li, Jingna</creatorcontrib><creatorcontrib>Wang, Haozhen</creatorcontrib><creatorcontrib>Zheng, Dahao</creatorcontrib><title>Stability and sharp decay for 3D incompressible MHD system with fractional horizontal dissipation and magnetic diffusion</title><title>Zeitschrift für angewandte Mathematik und Physik</title><addtitle>Z. Angew. Math. Phys</addtitle><description>This paper aims as the stability and large-time behavior of 3D incompressible magnetohydrodynamic (MHD) equations with fractional horizontal dissipation and magnetic diffusion. By using the energy methods, we obtain that if the initial data are small enough in
H
3
(
R
3
)
, then this system possesses a global solution, and whose horizontal derivatives decay at least at the rate of
(
1
+
t
)
-
1
2
. Moreover, if we control the initial data further small in
H
3
(
R
3
)
∩
H
h
-
1
(
R
3
)
, the sharp decay of this solution and its first-order derivatives is established.</description><subject>Dissipation</subject><subject>Energy methods</subject><subject>Engineering</subject><subject>Fluid flow</subject><subject>Magnetic diffusion</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical Methods in Physics</subject><subject>Stability</subject><subject>Theoretical and Applied Mechanics</subject><issn>0044-2275</issn><issn>1420-9039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAUhYMoOI6-gKuA62p-2qZZyow6wogLdR3SJJ3J0DY1yaD16Y1TwZ2Ly73kfOcQDgCXGF1jhNhNQAhRmiGSBnPKs-IIzHBOUMYR5cdghlCeZ4Sw4hSchbBLOMOIzsDnS5S1bW0coew1DFvpB6iNkiNsnId0CW2vXDd4E4KtWwOfVksYxhBNBz9s3MLGSxWt62ULt87bL9fHdGqb8EH-CIfcTm56E61KQtPsQ3o-ByeNbIO5-N1z8HZ_97pYZevnh8fF7TpTtKQx4zUuKdEcy6rCqCyqPF2Ua8OSgjGqmWkqw3FRc94YonRBdEV1yfKalVQrOgdXU-7g3fvehCh2bu_Td4MgjFHMGc5xoshEKe9C8KYRg7ed9KPASPw0LKaGRWpYHBoWRTLRyRQS3G-M_4v-x_UNE7F_kA</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Li, Jingna</creator><creator>Wang, Haozhen</creator><creator>Zheng, Dahao</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230401</creationdate><title>Stability and sharp decay for 3D incompressible MHD system with fractional horizontal dissipation and magnetic diffusion</title><author>Li, Jingna ; Wang, Haozhen ; Zheng, Dahao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-9b1632d91a881065841a839de79b1110b7ef8e915b99fe2cd52d83d674b763dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Dissipation</topic><topic>Energy methods</topic><topic>Engineering</topic><topic>Fluid flow</topic><topic>Magnetic diffusion</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical Methods in Physics</topic><topic>Stability</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jingna</creatorcontrib><creatorcontrib>Wang, Haozhen</creatorcontrib><creatorcontrib>Zheng, Dahao</creatorcontrib><collection>CrossRef</collection><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jingna</au><au>Wang, Haozhen</au><au>Zheng, Dahao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability and sharp decay for 3D incompressible MHD system with fractional horizontal dissipation and magnetic diffusion</atitle><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle><stitle>Z. Angew. Math. Phys</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>74</volume><issue>2</issue><artnum>44</artnum><issn>0044-2275</issn><eissn>1420-9039</eissn><abstract>This paper aims as the stability and large-time behavior of 3D incompressible magnetohydrodynamic (MHD) equations with fractional horizontal dissipation and magnetic diffusion. By using the energy methods, we obtain that if the initial data are small enough in
H
3
(
R
3
)
, then this system possesses a global solution, and whose horizontal derivatives decay at least at the rate of
(
1
+
t
)
-
1
2
. Moreover, if we control the initial data further small in
H
3
(
R
3
)
∩
H
h
-
1
(
R
3
)
, the sharp decay of this solution and its first-order derivatives is established.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00033-023-01939-5</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-2275 |
ispartof | Zeitschrift für angewandte Mathematik und Physik, 2023-04, Vol.74 (2), Article 44 |
issn | 0044-2275 1420-9039 |
language | eng |
recordid | cdi_proquest_journals_2773197141 |
source | SpringerNature Journals |
subjects | Dissipation Energy methods Engineering Fluid flow Magnetic diffusion Magnetohydrodynamics Mathematical Methods in Physics Stability Theoretical and Applied Mechanics |
title | Stability and sharp decay for 3D incompressible MHD system with fractional horizontal dissipation and magnetic diffusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A30%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20and%20sharp%20decay%20for%203D%20incompressible%20MHD%20system%20with%20fractional%20horizontal%20dissipation%20and%20magnetic%20diffusion&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Physik&rft.au=Li,%20Jingna&rft.date=2023-04-01&rft.volume=74&rft.issue=2&rft.artnum=44&rft.issn=0044-2275&rft.eissn=1420-9039&rft_id=info:doi/10.1007/s00033-023-01939-5&rft_dat=%3Cproquest_cross%3E2773197141%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2773197141&rft_id=info:pmid/&rfr_iscdi=true |