Modulate the Interfacial Oxygen Vacancy for High Performance MoS2 Photosensing−Memory Device

Developing memristor with photosensing behavior would facilitate the construction of an advanced neuromorphic computing framework for future sensing−memory−computing integrated system. Although the memristor has already got much attention, its optoelectronic sensing mechanism is still unclear, thus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced optical materials 2023-02, Vol.11 (3), p.n/a
Hauptverfasser: Peng, Zhenghan, Luo, Xiai, Liang, Kexin, Tan, Chao, Gao, Libin, Wang, Zegao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page
container_title Advanced optical materials
container_volume 11
creator Peng, Zhenghan
Luo, Xiai
Liang, Kexin
Tan, Chao
Gao, Libin
Wang, Zegao
description Developing memristor with photosensing behavior would facilitate the construction of an advanced neuromorphic computing framework for future sensing−memory−computing integrated system. Although the memristor has already got much attention, its optoelectronic sensing mechanism is still unclear, thus the enhancement is challenging. Herein, a MoS2 memristor is fabricated on the oxygen‐vacancy‐rich Bi1.5MgNb1.5O7 thin film. By combining the voltage stress and photoexcitation, the memristor, its photosensing property, and their correlation have been systematically studied. The results show that the interfacial oxygen vacancy can trap the photogenerated electron obeying the photogating effect which tunes the Fermi level of MoS2 and exhibits tunable hysteresis behavior. The photoexcitation mechanism has been studied showing wavelength and voltage‐dependent photosensing−memory performance. The responsivity can reach up to 2 × 1011 V W−1 at 550 nm illumination and the hysteresis ratio (ΔH/Vg), one of the factors determining the memory, can be modulated by 40 times, which is larger than for previous 2D materials‐based memristors. Contour maps of external quantum efficiency show illumination, voltage, and wavelength dependence where the value becomes larger at lower illumination power density and higher voltage. This study reveals the interfacial enhanced photosensing mechanism of MoS2 device and provides new way to enrich memristor performance. The photosensing−memory effect of MoS2 transistor is enhanced by modulating the interface with oxygen vacancy‐rich Bi1.5MgNb1.5O7 film. The responsivity can reach up to 2 × 1011 V W−1 at 550 nm illumination, moreover, the hysteresis ratio (H/Vg) as one of the factors in memory can be modulated by 40 times, which is larger than for previous 2D materials‐based memristors.
doi_str_mv 10.1002/adom.202202378
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2772201344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2772201344</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2338-eabce159414dff26c053f67b43fa86cbc7c40b37a19815eb57461fa953f152713</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsNRePS94Tt2PJJscS6u20NCCH0eXzXa2TUmydZOq-Qee_Yn-ErdUijAw8w4PM_AgdE3JkBLCbtXKVkNGmC8ukjPUYzSNAkoEPf83X6JB02wJIT7wNBQ99JrZ1b5ULeB2A3hWt-CM0oUq8eKzW0ONX5RWte6wsQ5Pi_UGLz1hXeWXgDP7yPByY1vbQN0U9frn6zuDyroOT-C90HCFLowqGxj89T56vr97Gk-D-eJhNh7Ngx3jPAlA5RpolIY0XBnDYk0ibmKRh9yoJNa5FjokOReKpgmNII9EGFOjUk_RiAnK--jmeHfn7NsemlZu7d7V_qVkQngrlIehp9Ij9VGU0MmdKyrlOkmJPDiUB4fy5FCOJovslPgvy6hoUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2772201344</pqid></control><display><type>article</type><title>Modulate the Interfacial Oxygen Vacancy for High Performance MoS2 Photosensing−Memory Device</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Peng, Zhenghan ; Luo, Xiai ; Liang, Kexin ; Tan, Chao ; Gao, Libin ; Wang, Zegao</creator><creatorcontrib>Peng, Zhenghan ; Luo, Xiai ; Liang, Kexin ; Tan, Chao ; Gao, Libin ; Wang, Zegao</creatorcontrib><description>Developing memristor with photosensing behavior would facilitate the construction of an advanced neuromorphic computing framework for future sensing−memory−computing integrated system. Although the memristor has already got much attention, its optoelectronic sensing mechanism is still unclear, thus the enhancement is challenging. Herein, a MoS2 memristor is fabricated on the oxygen‐vacancy‐rich Bi1.5MgNb1.5O7 thin film. By combining the voltage stress and photoexcitation, the memristor, its photosensing property, and their correlation have been systematically studied. The results show that the interfacial oxygen vacancy can trap the photogenerated electron obeying the photogating effect which tunes the Fermi level of MoS2 and exhibits tunable hysteresis behavior. The photoexcitation mechanism has been studied showing wavelength and voltage‐dependent photosensing−memory performance. The responsivity can reach up to 2 × 1011 V W−1 at 550 nm illumination and the hysteresis ratio (ΔH/Vg), one of the factors determining the memory, can be modulated by 40 times, which is larger than for previous 2D materials‐based memristors. Contour maps of external quantum efficiency show illumination, voltage, and wavelength dependence where the value becomes larger at lower illumination power density and higher voltage. This study reveals the interfacial enhanced photosensing mechanism of MoS2 device and provides new way to enrich memristor performance. The photosensing−memory effect of MoS2 transistor is enhanced by modulating the interface with oxygen vacancy‐rich Bi1.5MgNb1.5O7 film. The responsivity can reach up to 2 × 1011 V W−1 at 550 nm illumination, moreover, the hysteresis ratio (H/Vg) as one of the factors in memory can be modulated by 40 times, which is larger than for previous 2D materials‐based memristors.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202202378</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>charge trapping ; Electric potential ; Hysteresis ; Illumination ; Materials science ; Memory devices ; Memristors ; Molybdenum disulfide ; MoS 2 ; Optics ; optoelectronic memristors ; Optoelectronics ; Oxygen ; oxygen vacancies ; Photoexcitation ; Quantum efficiency ; sensing‐memory devices ; Thin films ; Two dimensional materials ; Voltage</subject><ispartof>Advanced optical materials, 2023-02, Vol.11 (3), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2023 Wiley‐VCH GmbH</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8094-3118 ; 0000-0002-0033-6538</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.202202378$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.202202378$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Peng, Zhenghan</creatorcontrib><creatorcontrib>Luo, Xiai</creatorcontrib><creatorcontrib>Liang, Kexin</creatorcontrib><creatorcontrib>Tan, Chao</creatorcontrib><creatorcontrib>Gao, Libin</creatorcontrib><creatorcontrib>Wang, Zegao</creatorcontrib><title>Modulate the Interfacial Oxygen Vacancy for High Performance MoS2 Photosensing−Memory Device</title><title>Advanced optical materials</title><description>Developing memristor with photosensing behavior would facilitate the construction of an advanced neuromorphic computing framework for future sensing−memory−computing integrated system. Although the memristor has already got much attention, its optoelectronic sensing mechanism is still unclear, thus the enhancement is challenging. Herein, a MoS2 memristor is fabricated on the oxygen‐vacancy‐rich Bi1.5MgNb1.5O7 thin film. By combining the voltage stress and photoexcitation, the memristor, its photosensing property, and their correlation have been systematically studied. The results show that the interfacial oxygen vacancy can trap the photogenerated electron obeying the photogating effect which tunes the Fermi level of MoS2 and exhibits tunable hysteresis behavior. The photoexcitation mechanism has been studied showing wavelength and voltage‐dependent photosensing−memory performance. The responsivity can reach up to 2 × 1011 V W−1 at 550 nm illumination and the hysteresis ratio (ΔH/Vg), one of the factors determining the memory, can be modulated by 40 times, which is larger than for previous 2D materials‐based memristors. Contour maps of external quantum efficiency show illumination, voltage, and wavelength dependence where the value becomes larger at lower illumination power density and higher voltage. This study reveals the interfacial enhanced photosensing mechanism of MoS2 device and provides new way to enrich memristor performance. The photosensing−memory effect of MoS2 transistor is enhanced by modulating the interface with oxygen vacancy‐rich Bi1.5MgNb1.5O7 film. The responsivity can reach up to 2 × 1011 V W−1 at 550 nm illumination, moreover, the hysteresis ratio (H/Vg) as one of the factors in memory can be modulated by 40 times, which is larger than for previous 2D materials‐based memristors.</description><subject>charge trapping</subject><subject>Electric potential</subject><subject>Hysteresis</subject><subject>Illumination</subject><subject>Materials science</subject><subject>Memory devices</subject><subject>Memristors</subject><subject>Molybdenum disulfide</subject><subject>MoS 2</subject><subject>Optics</subject><subject>optoelectronic memristors</subject><subject>Optoelectronics</subject><subject>Oxygen</subject><subject>oxygen vacancies</subject><subject>Photoexcitation</subject><subject>Quantum efficiency</subject><subject>sensing‐memory devices</subject><subject>Thin films</subject><subject>Two dimensional materials</subject><subject>Voltage</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkE1Lw0AQhhdRsNRePS94Tt2PJJscS6u20NCCH0eXzXa2TUmydZOq-Qee_Yn-ErdUijAw8w4PM_AgdE3JkBLCbtXKVkNGmC8ukjPUYzSNAkoEPf83X6JB02wJIT7wNBQ99JrZ1b5ULeB2A3hWt-CM0oUq8eKzW0ONX5RWte6wsQ5Pi_UGLz1hXeWXgDP7yPByY1vbQN0U9frn6zuDyroOT-C90HCFLowqGxj89T56vr97Gk-D-eJhNh7Ngx3jPAlA5RpolIY0XBnDYk0ibmKRh9yoJNa5FjokOReKpgmNII9EGFOjUk_RiAnK--jmeHfn7NsemlZu7d7V_qVkQngrlIehp9Ij9VGU0MmdKyrlOkmJPDiUB4fy5FCOJovslPgvy6hoUQ</recordid><startdate>20230203</startdate><enddate>20230203</enddate><creator>Peng, Zhenghan</creator><creator>Luo, Xiai</creator><creator>Liang, Kexin</creator><creator>Tan, Chao</creator><creator>Gao, Libin</creator><creator>Wang, Zegao</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8094-3118</orcidid><orcidid>https://orcid.org/0000-0002-0033-6538</orcidid></search><sort><creationdate>20230203</creationdate><title>Modulate the Interfacial Oxygen Vacancy for High Performance MoS2 Photosensing−Memory Device</title><author>Peng, Zhenghan ; Luo, Xiai ; Liang, Kexin ; Tan, Chao ; Gao, Libin ; Wang, Zegao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2338-eabce159414dff26c053f67b43fa86cbc7c40b37a19815eb57461fa953f152713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>charge trapping</topic><topic>Electric potential</topic><topic>Hysteresis</topic><topic>Illumination</topic><topic>Materials science</topic><topic>Memory devices</topic><topic>Memristors</topic><topic>Molybdenum disulfide</topic><topic>MoS 2</topic><topic>Optics</topic><topic>optoelectronic memristors</topic><topic>Optoelectronics</topic><topic>Oxygen</topic><topic>oxygen vacancies</topic><topic>Photoexcitation</topic><topic>Quantum efficiency</topic><topic>sensing‐memory devices</topic><topic>Thin films</topic><topic>Two dimensional materials</topic><topic>Voltage</topic><toplevel>online_resources</toplevel><creatorcontrib>Peng, Zhenghan</creatorcontrib><creatorcontrib>Luo, Xiai</creatorcontrib><creatorcontrib>Liang, Kexin</creatorcontrib><creatorcontrib>Tan, Chao</creatorcontrib><creatorcontrib>Gao, Libin</creatorcontrib><creatorcontrib>Wang, Zegao</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Zhenghan</au><au>Luo, Xiai</au><au>Liang, Kexin</au><au>Tan, Chao</au><au>Gao, Libin</au><au>Wang, Zegao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulate the Interfacial Oxygen Vacancy for High Performance MoS2 Photosensing−Memory Device</atitle><jtitle>Advanced optical materials</jtitle><date>2023-02-03</date><risdate>2023</risdate><volume>11</volume><issue>3</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Developing memristor with photosensing behavior would facilitate the construction of an advanced neuromorphic computing framework for future sensing−memory−computing integrated system. Although the memristor has already got much attention, its optoelectronic sensing mechanism is still unclear, thus the enhancement is challenging. Herein, a MoS2 memristor is fabricated on the oxygen‐vacancy‐rich Bi1.5MgNb1.5O7 thin film. By combining the voltage stress and photoexcitation, the memristor, its photosensing property, and their correlation have been systematically studied. The results show that the interfacial oxygen vacancy can trap the photogenerated electron obeying the photogating effect which tunes the Fermi level of MoS2 and exhibits tunable hysteresis behavior. The photoexcitation mechanism has been studied showing wavelength and voltage‐dependent photosensing−memory performance. The responsivity can reach up to 2 × 1011 V W−1 at 550 nm illumination and the hysteresis ratio (ΔH/Vg), one of the factors determining the memory, can be modulated by 40 times, which is larger than for previous 2D materials‐based memristors. Contour maps of external quantum efficiency show illumination, voltage, and wavelength dependence where the value becomes larger at lower illumination power density and higher voltage. This study reveals the interfacial enhanced photosensing mechanism of MoS2 device and provides new way to enrich memristor performance. The photosensing−memory effect of MoS2 transistor is enhanced by modulating the interface with oxygen vacancy‐rich Bi1.5MgNb1.5O7 film. The responsivity can reach up to 2 × 1011 V W−1 at 550 nm illumination, moreover, the hysteresis ratio (H/Vg) as one of the factors in memory can be modulated by 40 times, which is larger than for previous 2D materials‐based memristors.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202202378</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8094-3118</orcidid><orcidid>https://orcid.org/0000-0002-0033-6538</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2195-1071
ispartof Advanced optical materials, 2023-02, Vol.11 (3), p.n/a
issn 2195-1071
2195-1071
language eng
recordid cdi_proquest_journals_2772201344
source Wiley Online Library Journals Frontfile Complete
subjects charge trapping
Electric potential
Hysteresis
Illumination
Materials science
Memory devices
Memristors
Molybdenum disulfide
MoS 2
Optics
optoelectronic memristors
Optoelectronics
Oxygen
oxygen vacancies
Photoexcitation
Quantum efficiency
sensing‐memory devices
Thin films
Two dimensional materials
Voltage
title Modulate the Interfacial Oxygen Vacancy for High Performance MoS2 Photosensing−Memory Device
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T04%3A46%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulate%20the%20Interfacial%20Oxygen%20Vacancy%20for%20High%20Performance%20MoS2%20Photosensing%E2%88%92Memory%20Device&rft.jtitle=Advanced%20optical%20materials&rft.au=Peng,%20Zhenghan&rft.date=2023-02-03&rft.volume=11&rft.issue=3&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202202378&rft_dat=%3Cproquest_wiley%3E2772201344%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2772201344&rft_id=info:pmid/&rfr_iscdi=true