Hetero‐Integrated InGaAs Photodiode and Oxide Memristor‐Based Artificial Optical Nerve for In‐Sensor NIR Image Processing

In‐sensor computing is an emerging architectural paradigm that fuses data acquisition and processing within a sensory domain. The integration of multiple functions into a single domain reduces the system footprint while it minimizes the energy and time for data transfer between sensory and computing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced optical materials 2023-02, Vol.11 (3), p.n/a
Hauptverfasser: Bae, Byungjoon, Park, Minseong, Lee, Doeon, Sim, Inbo, Lee, Kyusang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page
container_title Advanced optical materials
container_volume 11
creator Bae, Byungjoon
Park, Minseong
Lee, Doeon
Sim, Inbo
Lee, Kyusang
description In‐sensor computing is an emerging architectural paradigm that fuses data acquisition and processing within a sensory domain. The integration of multiple functions into a single domain reduces the system footprint while it minimizes the energy and time for data transfer between sensory and computing units. However, it is challenging for a simple and compact image sensor array to achieve both sensing and computing in each pixel. Here, this work demonstrates a focal plane array with a heterogeneously integrated one‐photodiode one‐resistor (1P‐1R)‐based artificial optical neuron that emulates the sensing, computing, and memorization of a biological retina system. This work employs an InGaAs photodiode featuring a high responsivity and a broad spectrum that covers near‐infrared (NIR) signals and employs an HfO2 memristor as the artificial synapse to achieve the computing/memorization in an analog domain. Using the fabricated focal plane array integrated with an artificial neural network, this work performs in‐sensor image identification of finger veins driven by NIR light illumination (≈84 % accuracy). The proposed in‐sensor image computing architecture that broadly covers the NIR spectrum offers widespread application of focal plane array for computer vision, neuromorphic computing, biomedical engineering, etc. In‐sensor computing is realized by hetero‐integrated one‐photodiode one‐resistor (1P‐1R) structure. This work employs a HfO2 memristor capable of storing information via resistive switching. The 1P‐1R array is fabricated and the optical programming and computing of the 1P‐1R array for machine learning applications is demonstrated, including Modified National Institute of Standards and Technology (MNIST) digit classification and vein identification.
doi_str_mv 10.1002/adom.202201905
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2772200871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2772200871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3575-30f909642e22115c0b30fbfc1a2fbece2c2b7fcdcf02f36ac8c6503bd78210b03</originalsourceid><addsrcrecordid>eNqFkE9PwkAQxTdGE4ly9dzEc3F2Syk9VlRoApT459xst7O4BLq4u6ic9CP4Gf0kLsGoN0_zZvJ7b5JHyBmFDgVgF7zWqw4DxoCmEB-QFqNpHFJI6OEffUza1i4AwC9R2k1a5G2EDo3-fP_IG4dzwx3WQd4MeWaD2aN2ula6xoA3dVC8Kq8muDLKOm285ZJbT2fGKamE4sugWDsl_JyiecZAauOjPHeHjfV6mt8G-YrPMZgZLdBa1cxPyZHkS4vt73lCHm6u7wejcFwM80E2DkUUJ3EYgUwh7XUZMkZpLKDyl0oKypmsUCATrEqkqIUEJqMeF33RiyGq6qTPKFQQnZDzfe7a6KcNWlcu9MY0_mXJksTXBv2Eeqqzp4TR1hqU5dqoFTfbkkK567nc9Vz-9OwN6d7wopa4_Ycus6ti8uv9ApNjhSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2772200871</pqid></control><display><type>article</type><title>Hetero‐Integrated InGaAs Photodiode and Oxide Memristor‐Based Artificial Optical Nerve for In‐Sensor NIR Image Processing</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bae, Byungjoon ; Park, Minseong ; Lee, Doeon ; Sim, Inbo ; Lee, Kyusang</creator><creatorcontrib>Bae, Byungjoon ; Park, Minseong ; Lee, Doeon ; Sim, Inbo ; Lee, Kyusang</creatorcontrib><description>In‐sensor computing is an emerging architectural paradigm that fuses data acquisition and processing within a sensory domain. The integration of multiple functions into a single domain reduces the system footprint while it minimizes the energy and time for data transfer between sensory and computing units. However, it is challenging for a simple and compact image sensor array to achieve both sensing and computing in each pixel. Here, this work demonstrates a focal plane array with a heterogeneously integrated one‐photodiode one‐resistor (1P‐1R)‐based artificial optical neuron that emulates the sensing, computing, and memorization of a biological retina system. This work employs an InGaAs photodiode featuring a high responsivity and a broad spectrum that covers near‐infrared (NIR) signals and employs an HfO2 memristor as the artificial synapse to achieve the computing/memorization in an analog domain. Using the fabricated focal plane array integrated with an artificial neural network, this work performs in‐sensor image identification of finger veins driven by NIR light illumination (≈84 % accuracy). The proposed in‐sensor image computing architecture that broadly covers the NIR spectrum offers widespread application of focal plane array for computer vision, neuromorphic computing, biomedical engineering, etc. In‐sensor computing is realized by hetero‐integrated one‐photodiode one‐resistor (1P‐1R) structure. This work employs a HfO2 memristor capable of storing information via resistive switching. The 1P‐1R array is fabricated and the optical programming and computing of the 1P‐1R array for machine learning applications is demonstrated, including Modified National Institute of Standards and Technology (MNIST) digit classification and vein identification.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202201905</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Artificial neural networks ; Biomedical engineering ; Computer vision ; Data acquisition ; Data integration ; Data transfer (computers) ; Domains ; edge‐computing ; Focal plane devices ; image classification ; Image processing ; Infrared radiation ; in‐sensor computing ; Materials science ; Memristors ; Multisensor fusion ; Near infrared radiation ; neuromorphic computing ; Optics ; Photodiodes ; Sensor arrays ; Sensors</subject><ispartof>Advanced optical materials, 2023-02, Vol.11 (3), p.n/a</ispartof><rights>2022 The Authors. Advanced Optical Materials published by Wiley‐VCH GmbH</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3575-30f909642e22115c0b30fbfc1a2fbece2c2b7fcdcf02f36ac8c6503bd78210b03</citedby><cites>FETCH-LOGICAL-c3575-30f909642e22115c0b30fbfc1a2fbece2c2b7fcdcf02f36ac8c6503bd78210b03</cites><orcidid>0000-0003-2923-1681 ; 0000-0001-7123-3395 ; 0000-0002-4305-3853</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.202201905$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.202201905$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Bae, Byungjoon</creatorcontrib><creatorcontrib>Park, Minseong</creatorcontrib><creatorcontrib>Lee, Doeon</creatorcontrib><creatorcontrib>Sim, Inbo</creatorcontrib><creatorcontrib>Lee, Kyusang</creatorcontrib><title>Hetero‐Integrated InGaAs Photodiode and Oxide Memristor‐Based Artificial Optical Nerve for In‐Sensor NIR Image Processing</title><title>Advanced optical materials</title><description>In‐sensor computing is an emerging architectural paradigm that fuses data acquisition and processing within a sensory domain. The integration of multiple functions into a single domain reduces the system footprint while it minimizes the energy and time for data transfer between sensory and computing units. However, it is challenging for a simple and compact image sensor array to achieve both sensing and computing in each pixel. Here, this work demonstrates a focal plane array with a heterogeneously integrated one‐photodiode one‐resistor (1P‐1R)‐based artificial optical neuron that emulates the sensing, computing, and memorization of a biological retina system. This work employs an InGaAs photodiode featuring a high responsivity and a broad spectrum that covers near‐infrared (NIR) signals and employs an HfO2 memristor as the artificial synapse to achieve the computing/memorization in an analog domain. Using the fabricated focal plane array integrated with an artificial neural network, this work performs in‐sensor image identification of finger veins driven by NIR light illumination (≈84 % accuracy). The proposed in‐sensor image computing architecture that broadly covers the NIR spectrum offers widespread application of focal plane array for computer vision, neuromorphic computing, biomedical engineering, etc. In‐sensor computing is realized by hetero‐integrated one‐photodiode one‐resistor (1P‐1R) structure. This work employs a HfO2 memristor capable of storing information via resistive switching. The 1P‐1R array is fabricated and the optical programming and computing of the 1P‐1R array for machine learning applications is demonstrated, including Modified National Institute of Standards and Technology (MNIST) digit classification and vein identification.</description><subject>Artificial neural networks</subject><subject>Biomedical engineering</subject><subject>Computer vision</subject><subject>Data acquisition</subject><subject>Data integration</subject><subject>Data transfer (computers)</subject><subject>Domains</subject><subject>edge‐computing</subject><subject>Focal plane devices</subject><subject>image classification</subject><subject>Image processing</subject><subject>Infrared radiation</subject><subject>in‐sensor computing</subject><subject>Materials science</subject><subject>Memristors</subject><subject>Multisensor fusion</subject><subject>Near infrared radiation</subject><subject>neuromorphic computing</subject><subject>Optics</subject><subject>Photodiodes</subject><subject>Sensor arrays</subject><subject>Sensors</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkE9PwkAQxTdGE4ly9dzEc3F2Syk9VlRoApT459xst7O4BLq4u6ic9CP4Gf0kLsGoN0_zZvJ7b5JHyBmFDgVgF7zWqw4DxoCmEB-QFqNpHFJI6OEffUza1i4AwC9R2k1a5G2EDo3-fP_IG4dzwx3WQd4MeWaD2aN2ula6xoA3dVC8Kq8muDLKOm285ZJbT2fGKamE4sugWDsl_JyiecZAauOjPHeHjfV6mt8G-YrPMZgZLdBa1cxPyZHkS4vt73lCHm6u7wejcFwM80E2DkUUJ3EYgUwh7XUZMkZpLKDyl0oKypmsUCATrEqkqIUEJqMeF33RiyGq6qTPKFQQnZDzfe7a6KcNWlcu9MY0_mXJksTXBv2Eeqqzp4TR1hqU5dqoFTfbkkK567nc9Vz-9OwN6d7wopa4_Ycus6ti8uv9ApNjhSA</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Bae, Byungjoon</creator><creator>Park, Minseong</creator><creator>Lee, Doeon</creator><creator>Sim, Inbo</creator><creator>Lee, Kyusang</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2923-1681</orcidid><orcidid>https://orcid.org/0000-0001-7123-3395</orcidid><orcidid>https://orcid.org/0000-0002-4305-3853</orcidid></search><sort><creationdate>20230201</creationdate><title>Hetero‐Integrated InGaAs Photodiode and Oxide Memristor‐Based Artificial Optical Nerve for In‐Sensor NIR Image Processing</title><author>Bae, Byungjoon ; Park, Minseong ; Lee, Doeon ; Sim, Inbo ; Lee, Kyusang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3575-30f909642e22115c0b30fbfc1a2fbece2c2b7fcdcf02f36ac8c6503bd78210b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Biomedical engineering</topic><topic>Computer vision</topic><topic>Data acquisition</topic><topic>Data integration</topic><topic>Data transfer (computers)</topic><topic>Domains</topic><topic>edge‐computing</topic><topic>Focal plane devices</topic><topic>image classification</topic><topic>Image processing</topic><topic>Infrared radiation</topic><topic>in‐sensor computing</topic><topic>Materials science</topic><topic>Memristors</topic><topic>Multisensor fusion</topic><topic>Near infrared radiation</topic><topic>neuromorphic computing</topic><topic>Optics</topic><topic>Photodiodes</topic><topic>Sensor arrays</topic><topic>Sensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Bae, Byungjoon</creatorcontrib><creatorcontrib>Park, Minseong</creatorcontrib><creatorcontrib>Lee, Doeon</creatorcontrib><creatorcontrib>Sim, Inbo</creatorcontrib><creatorcontrib>Lee, Kyusang</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bae, Byungjoon</au><au>Park, Minseong</au><au>Lee, Doeon</au><au>Sim, Inbo</au><au>Lee, Kyusang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hetero‐Integrated InGaAs Photodiode and Oxide Memristor‐Based Artificial Optical Nerve for In‐Sensor NIR Image Processing</atitle><jtitle>Advanced optical materials</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>11</volume><issue>3</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>In‐sensor computing is an emerging architectural paradigm that fuses data acquisition and processing within a sensory domain. The integration of multiple functions into a single domain reduces the system footprint while it minimizes the energy and time for data transfer between sensory and computing units. However, it is challenging for a simple and compact image sensor array to achieve both sensing and computing in each pixel. Here, this work demonstrates a focal plane array with a heterogeneously integrated one‐photodiode one‐resistor (1P‐1R)‐based artificial optical neuron that emulates the sensing, computing, and memorization of a biological retina system. This work employs an InGaAs photodiode featuring a high responsivity and a broad spectrum that covers near‐infrared (NIR) signals and employs an HfO2 memristor as the artificial synapse to achieve the computing/memorization in an analog domain. Using the fabricated focal plane array integrated with an artificial neural network, this work performs in‐sensor image identification of finger veins driven by NIR light illumination (≈84 % accuracy). The proposed in‐sensor image computing architecture that broadly covers the NIR spectrum offers widespread application of focal plane array for computer vision, neuromorphic computing, biomedical engineering, etc. In‐sensor computing is realized by hetero‐integrated one‐photodiode one‐resistor (1P‐1R) structure. This work employs a HfO2 memristor capable of storing information via resistive switching. The 1P‐1R array is fabricated and the optical programming and computing of the 1P‐1R array for machine learning applications is demonstrated, including Modified National Institute of Standards and Technology (MNIST) digit classification and vein identification.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202201905</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2923-1681</orcidid><orcidid>https://orcid.org/0000-0001-7123-3395</orcidid><orcidid>https://orcid.org/0000-0002-4305-3853</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2195-1071
ispartof Advanced optical materials, 2023-02, Vol.11 (3), p.n/a
issn 2195-1071
2195-1071
language eng
recordid cdi_proquest_journals_2772200871
source Wiley Online Library Journals Frontfile Complete
subjects Artificial neural networks
Biomedical engineering
Computer vision
Data acquisition
Data integration
Data transfer (computers)
Domains
edge‐computing
Focal plane devices
image classification
Image processing
Infrared radiation
in‐sensor computing
Materials science
Memristors
Multisensor fusion
Near infrared radiation
neuromorphic computing
Optics
Photodiodes
Sensor arrays
Sensors
title Hetero‐Integrated InGaAs Photodiode and Oxide Memristor‐Based Artificial Optical Nerve for In‐Sensor NIR Image Processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T03%3A34%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hetero%E2%80%90Integrated%20InGaAs%20Photodiode%20and%20Oxide%20Memristor%E2%80%90Based%20Artificial%20Optical%20Nerve%20for%20In%E2%80%90Sensor%20NIR%20Image%20Processing&rft.jtitle=Advanced%20optical%20materials&rft.au=Bae,%20Byungjoon&rft.date=2023-02-01&rft.volume=11&rft.issue=3&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202201905&rft_dat=%3Cproquest_cross%3E2772200871%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2772200871&rft_id=info:pmid/&rfr_iscdi=true