GrowliFlower: An image time‐series dataset for GROWth analysis of cauLIFLOWER
In this paper, we present GrowliFlower, a georeferenced, image‐based unmanned aerial vehicle time‐series dataset of two monitored cauliflower fields (0.39 and 0.60 ha) acquired in 2 years, 2020 and 2021. The proposed dataset contains RGB and multispectral orthophotos with coordinates of approximatel...
Gespeichert in:
Veröffentlicht in: | Journal of field robotics 2023-03, Vol.40 (2), p.173-192 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 192 |
---|---|
container_issue | 2 |
container_start_page | 173 |
container_title | Journal of field robotics |
container_volume | 40 |
creator | Kierdorf, Jana Junker‐Frohn, Laura Verena Delaney, Mike Olave, Mariele Donoso Burkart, Andreas Jaenicke, Hannah Muller, Onno Rascher, Uwe Roscher, Ribana |
description | In this paper, we present GrowliFlower, a georeferenced, image‐based unmanned aerial vehicle time‐series dataset of two monitored cauliflower fields (0.39 and 0.60 ha) acquired in 2 years, 2020 and 2021. The proposed dataset contains RGB and multispectral orthophotos with coordinates of approximately 14,000 individual cauliflower plants. The coordinates enable the extraction of complete and incomplete time‐series of image patches showing individual plants. The dataset contains the collected phenotypic traits of 740 plants, including the developmental stage and plant and cauliflower size. The harvestable product is completely covered by leaves, thus, plant IDs and coordinates are provided to extract image pairs of plants pre‐ and post‐defoliation. In addition, to facilitate classification, detection, segmentation, instance segmentation, and other similar computer vision tasks, the proposed dataset contains pixel‐accurate leaf and plant instance segmentations, as well as stem annotations. The proposed dataset was created to facilitate the development and evaluation of various machine‐learning approaches. It focuses on the analysis of growth and development of cauliflower and the derivation of phenotypic traits to advance automation in agriculture. Two baseline results of instance segmentation tasks at the plant and leaf level based on labeled instance segmentation data are presented. The complete GrowliFlower dataset is publicly available (http://rs.ipb.uni-bonn.de/data/growliflower/). |
doi_str_mv | 10.1002/rob.22122 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2771860955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2771860955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3322-358abf7625c7aa7625d3196542321bbf1cdb7663b3637126a142193f36d14bc73</originalsourceid><addsrcrecordid>eNp1kL1OwzAURi0EEqUw8AaWmBjS-ie2E7ZStaVSpEgVqKNlJzakSutip4q68Qg8I09CShAb03eH813dewC4xWiEESJj7_SIEEzIGRhgxngUp1yc_80svQRXIWwQimmSsgHIF961dTWvXWv8A5zsYLVVrwY21dZ8fXwG4ysTYKkaFUwDrfNwscrXzRtUO1UfQxWgs7BQh2w5z_L1bHUNLqyqg7n5zSF4mc-ep09Rli-W00kWFZQSElGWKG0FJ6wQSp2ypDjlLCaUYK0tLkotOKeaciow4QrHBKfUUl7iWBeCDsFdv3fv3fvBhEZu3MF3NwVJhMAJRyljHXXfU4V3IXhj5d53__mjxEiefMnOl_zx1bHjnm2r2hz_B-Uqf-wb3_eDapY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771860955</pqid></control><display><type>article</type><title>GrowliFlower: An image time‐series dataset for GROWth analysis of cauLIFLOWER</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kierdorf, Jana ; Junker‐Frohn, Laura Verena ; Delaney, Mike ; Olave, Mariele Donoso ; Burkart, Andreas ; Jaenicke, Hannah ; Muller, Onno ; Rascher, Uwe ; Roscher, Ribana</creator><creatorcontrib>Kierdorf, Jana ; Junker‐Frohn, Laura Verena ; Delaney, Mike ; Olave, Mariele Donoso ; Burkart, Andreas ; Jaenicke, Hannah ; Muller, Onno ; Rascher, Uwe ; Roscher, Ribana</creatorcontrib><description>In this paper, we present GrowliFlower, a georeferenced, image‐based unmanned aerial vehicle time‐series dataset of two monitored cauliflower fields (0.39 and 0.60 ha) acquired in 2 years, 2020 and 2021. The proposed dataset contains RGB and multispectral orthophotos with coordinates of approximately 14,000 individual cauliflower plants. The coordinates enable the extraction of complete and incomplete time‐series of image patches showing individual plants. The dataset contains the collected phenotypic traits of 740 plants, including the developmental stage and plant and cauliflower size. The harvestable product is completely covered by leaves, thus, plant IDs and coordinates are provided to extract image pairs of plants pre‐ and post‐defoliation. In addition, to facilitate classification, detection, segmentation, instance segmentation, and other similar computer vision tasks, the proposed dataset contains pixel‐accurate leaf and plant instance segmentations, as well as stem annotations. The proposed dataset was created to facilitate the development and evaluation of various machine‐learning approaches. It focuses on the analysis of growth and development of cauliflower and the derivation of phenotypic traits to advance automation in agriculture. Two baseline results of instance segmentation tasks at the plant and leaf level based on labeled instance segmentation data are presented. The complete GrowliFlower dataset is publicly available (http://rs.ipb.uni-bonn.de/data/growliflower/).</description><identifier>ISSN: 1556-4959</identifier><identifier>EISSN: 1556-4967</identifier><identifier>DOI: 10.1002/rob.22122</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>agricultural plant dataset ; Computer vision ; crop development ; crop growth ; Datasets ; Defoliation ; Image annotation ; Image segmentation ; instance segmentation ; Machine learning ; plant monitoring ; Plants (botany) ; UAV ; Unmanned aerial vehicles</subject><ispartof>Journal of field robotics, 2023-03, Vol.40 (2), p.173-192</ispartof><rights>2022 The Authors. published by Wiley Periodicals LLC.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3322-358abf7625c7aa7625d3196542321bbf1cdb7663b3637126a142193f36d14bc73</citedby><cites>FETCH-LOGICAL-c3322-358abf7625c7aa7625d3196542321bbf1cdb7663b3637126a142193f36d14bc73</cites><orcidid>0000-0003-0094-6210 ; 0000-0003-1145-1555</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frob.22122$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frob.22122$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1416,27915,27916,45565,45566</link.rule.ids></links><search><creatorcontrib>Kierdorf, Jana</creatorcontrib><creatorcontrib>Junker‐Frohn, Laura Verena</creatorcontrib><creatorcontrib>Delaney, Mike</creatorcontrib><creatorcontrib>Olave, Mariele Donoso</creatorcontrib><creatorcontrib>Burkart, Andreas</creatorcontrib><creatorcontrib>Jaenicke, Hannah</creatorcontrib><creatorcontrib>Muller, Onno</creatorcontrib><creatorcontrib>Rascher, Uwe</creatorcontrib><creatorcontrib>Roscher, Ribana</creatorcontrib><title>GrowliFlower: An image time‐series dataset for GROWth analysis of cauLIFLOWER</title><title>Journal of field robotics</title><description>In this paper, we present GrowliFlower, a georeferenced, image‐based unmanned aerial vehicle time‐series dataset of two monitored cauliflower fields (0.39 and 0.60 ha) acquired in 2 years, 2020 and 2021. The proposed dataset contains RGB and multispectral orthophotos with coordinates of approximately 14,000 individual cauliflower plants. The coordinates enable the extraction of complete and incomplete time‐series of image patches showing individual plants. The dataset contains the collected phenotypic traits of 740 plants, including the developmental stage and plant and cauliflower size. The harvestable product is completely covered by leaves, thus, plant IDs and coordinates are provided to extract image pairs of plants pre‐ and post‐defoliation. In addition, to facilitate classification, detection, segmentation, instance segmentation, and other similar computer vision tasks, the proposed dataset contains pixel‐accurate leaf and plant instance segmentations, as well as stem annotations. The proposed dataset was created to facilitate the development and evaluation of various machine‐learning approaches. It focuses on the analysis of growth and development of cauliflower and the derivation of phenotypic traits to advance automation in agriculture. Two baseline results of instance segmentation tasks at the plant and leaf level based on labeled instance segmentation data are presented. The complete GrowliFlower dataset is publicly available (http://rs.ipb.uni-bonn.de/data/growliflower/).</description><subject>agricultural plant dataset</subject><subject>Computer vision</subject><subject>crop development</subject><subject>crop growth</subject><subject>Datasets</subject><subject>Defoliation</subject><subject>Image annotation</subject><subject>Image segmentation</subject><subject>instance segmentation</subject><subject>Machine learning</subject><subject>plant monitoring</subject><subject>Plants (botany)</subject><subject>UAV</subject><subject>Unmanned aerial vehicles</subject><issn>1556-4959</issn><issn>1556-4967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kL1OwzAURi0EEqUw8AaWmBjS-ie2E7ZStaVSpEgVqKNlJzakSutip4q68Qg8I09CShAb03eH813dewC4xWiEESJj7_SIEEzIGRhgxngUp1yc_80svQRXIWwQimmSsgHIF961dTWvXWv8A5zsYLVVrwY21dZ8fXwG4ysTYKkaFUwDrfNwscrXzRtUO1UfQxWgs7BQh2w5z_L1bHUNLqyqg7n5zSF4mc-ep09Rli-W00kWFZQSElGWKG0FJ6wQSp2ypDjlLCaUYK0tLkotOKeaciow4QrHBKfUUl7iWBeCDsFdv3fv3fvBhEZu3MF3NwVJhMAJRyljHXXfU4V3IXhj5d53__mjxEiefMnOl_zx1bHjnm2r2hz_B-Uqf-wb3_eDapY</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Kierdorf, Jana</creator><creator>Junker‐Frohn, Laura Verena</creator><creator>Delaney, Mike</creator><creator>Olave, Mariele Donoso</creator><creator>Burkart, Andreas</creator><creator>Jaenicke, Hannah</creator><creator>Muller, Onno</creator><creator>Rascher, Uwe</creator><creator>Roscher, Ribana</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0094-6210</orcidid><orcidid>https://orcid.org/0000-0003-1145-1555</orcidid></search><sort><creationdate>202303</creationdate><title>GrowliFlower: An image time‐series dataset for GROWth analysis of cauLIFLOWER</title><author>Kierdorf, Jana ; Junker‐Frohn, Laura Verena ; Delaney, Mike ; Olave, Mariele Donoso ; Burkart, Andreas ; Jaenicke, Hannah ; Muller, Onno ; Rascher, Uwe ; Roscher, Ribana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3322-358abf7625c7aa7625d3196542321bbf1cdb7663b3637126a142193f36d14bc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>agricultural plant dataset</topic><topic>Computer vision</topic><topic>crop development</topic><topic>crop growth</topic><topic>Datasets</topic><topic>Defoliation</topic><topic>Image annotation</topic><topic>Image segmentation</topic><topic>instance segmentation</topic><topic>Machine learning</topic><topic>plant monitoring</topic><topic>Plants (botany)</topic><topic>UAV</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kierdorf, Jana</creatorcontrib><creatorcontrib>Junker‐Frohn, Laura Verena</creatorcontrib><creatorcontrib>Delaney, Mike</creatorcontrib><creatorcontrib>Olave, Mariele Donoso</creatorcontrib><creatorcontrib>Burkart, Andreas</creatorcontrib><creatorcontrib>Jaenicke, Hannah</creatorcontrib><creatorcontrib>Muller, Onno</creatorcontrib><creatorcontrib>Rascher, Uwe</creatorcontrib><creatorcontrib>Roscher, Ribana</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of field robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kierdorf, Jana</au><au>Junker‐Frohn, Laura Verena</au><au>Delaney, Mike</au><au>Olave, Mariele Donoso</au><au>Burkart, Andreas</au><au>Jaenicke, Hannah</au><au>Muller, Onno</au><au>Rascher, Uwe</au><au>Roscher, Ribana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GrowliFlower: An image time‐series dataset for GROWth analysis of cauLIFLOWER</atitle><jtitle>Journal of field robotics</jtitle><date>2023-03</date><risdate>2023</risdate><volume>40</volume><issue>2</issue><spage>173</spage><epage>192</epage><pages>173-192</pages><issn>1556-4959</issn><eissn>1556-4967</eissn><abstract>In this paper, we present GrowliFlower, a georeferenced, image‐based unmanned aerial vehicle time‐series dataset of two monitored cauliflower fields (0.39 and 0.60 ha) acquired in 2 years, 2020 and 2021. The proposed dataset contains RGB and multispectral orthophotos with coordinates of approximately 14,000 individual cauliflower plants. The coordinates enable the extraction of complete and incomplete time‐series of image patches showing individual plants. The dataset contains the collected phenotypic traits of 740 plants, including the developmental stage and plant and cauliflower size. The harvestable product is completely covered by leaves, thus, plant IDs and coordinates are provided to extract image pairs of plants pre‐ and post‐defoliation. In addition, to facilitate classification, detection, segmentation, instance segmentation, and other similar computer vision tasks, the proposed dataset contains pixel‐accurate leaf and plant instance segmentations, as well as stem annotations. The proposed dataset was created to facilitate the development and evaluation of various machine‐learning approaches. It focuses on the analysis of growth and development of cauliflower and the derivation of phenotypic traits to advance automation in agriculture. Two baseline results of instance segmentation tasks at the plant and leaf level based on labeled instance segmentation data are presented. The complete GrowliFlower dataset is publicly available (http://rs.ipb.uni-bonn.de/data/growliflower/).</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rob.22122</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-0094-6210</orcidid><orcidid>https://orcid.org/0000-0003-1145-1555</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1556-4959 |
ispartof | Journal of field robotics, 2023-03, Vol.40 (2), p.173-192 |
issn | 1556-4959 1556-4967 |
language | eng |
recordid | cdi_proquest_journals_2771860955 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | agricultural plant dataset Computer vision crop development crop growth Datasets Defoliation Image annotation Image segmentation instance segmentation Machine learning plant monitoring Plants (botany) UAV Unmanned aerial vehicles |
title | GrowliFlower: An image time‐series dataset for GROWth analysis of cauLIFLOWER |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T21%3A19%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GrowliFlower:%20An%20image%20time%E2%80%90series%20dataset%20for%20GROWth%20analysis%20of%20cauLIFLOWER&rft.jtitle=Journal%20of%20field%20robotics&rft.au=Kierdorf,%20Jana&rft.date=2023-03&rft.volume=40&rft.issue=2&rft.spage=173&rft.epage=192&rft.pages=173-192&rft.issn=1556-4959&rft.eissn=1556-4967&rft_id=info:doi/10.1002/rob.22122&rft_dat=%3Cproquest_cross%3E2771860955%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2771860955&rft_id=info:pmid/&rfr_iscdi=true |