GrowliFlower: An image time‐series dataset for GROWth analysis of cauLIFLOWER

In this paper, we present GrowliFlower, a georeferenced, image‐based unmanned aerial vehicle time‐series dataset of two monitored cauliflower fields (0.39 and 0.60 ha) acquired in 2 years, 2020 and 2021. The proposed dataset contains RGB and multispectral orthophotos with coordinates of approximatel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of field robotics 2023-03, Vol.40 (2), p.173-192
Hauptverfasser: Kierdorf, Jana, Junker‐Frohn, Laura Verena, Delaney, Mike, Olave, Mariele Donoso, Burkart, Andreas, Jaenicke, Hannah, Muller, Onno, Rascher, Uwe, Roscher, Ribana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 192
container_issue 2
container_start_page 173
container_title Journal of field robotics
container_volume 40
creator Kierdorf, Jana
Junker‐Frohn, Laura Verena
Delaney, Mike
Olave, Mariele Donoso
Burkart, Andreas
Jaenicke, Hannah
Muller, Onno
Rascher, Uwe
Roscher, Ribana
description In this paper, we present GrowliFlower, a georeferenced, image‐based unmanned aerial vehicle time‐series dataset of two monitored cauliflower fields (0.39 and 0.60 ha) acquired in 2 years, 2020 and 2021. The proposed dataset contains RGB and multispectral orthophotos with coordinates of approximately 14,000 individual cauliflower plants. The coordinates enable the extraction of complete and incomplete time‐series of image patches showing individual plants. The dataset contains the collected phenotypic traits of 740 plants, including the developmental stage and plant and cauliflower size. The harvestable product is completely covered by leaves, thus, plant IDs and coordinates are provided to extract image pairs of plants pre‐ and post‐defoliation. In addition, to facilitate classification, detection, segmentation, instance segmentation, and other similar computer vision tasks, the proposed dataset contains pixel‐accurate leaf and plant instance segmentations, as well as stem annotations. The proposed dataset was created to facilitate the development and evaluation of various machine‐learning approaches. It focuses on the analysis of growth and development of cauliflower and the derivation of phenotypic traits to advance automation in agriculture. Two baseline results of instance segmentation tasks at the plant and leaf level based on labeled instance segmentation data are presented. The complete GrowliFlower dataset is publicly available (http://rs.ipb.uni-bonn.de/data/growliflower/).
doi_str_mv 10.1002/rob.22122
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2771860955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2771860955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3322-358abf7625c7aa7625d3196542321bbf1cdb7663b3637126a142193f36d14bc73</originalsourceid><addsrcrecordid>eNp1kL1OwzAURi0EEqUw8AaWmBjS-ie2E7ZStaVSpEgVqKNlJzakSutip4q68Qg8I09CShAb03eH813dewC4xWiEESJj7_SIEEzIGRhgxngUp1yc_80svQRXIWwQimmSsgHIF961dTWvXWv8A5zsYLVVrwY21dZ8fXwG4ysTYKkaFUwDrfNwscrXzRtUO1UfQxWgs7BQh2w5z_L1bHUNLqyqg7n5zSF4mc-ep09Rli-W00kWFZQSElGWKG0FJ6wQSp2ypDjlLCaUYK0tLkotOKeaciow4QrHBKfUUl7iWBeCDsFdv3fv3fvBhEZu3MF3NwVJhMAJRyljHXXfU4V3IXhj5d53__mjxEiefMnOl_zx1bHjnm2r2hz_B-Uqf-wb3_eDapY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771860955</pqid></control><display><type>article</type><title>GrowliFlower: An image time‐series dataset for GROWth analysis of cauLIFLOWER</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kierdorf, Jana ; Junker‐Frohn, Laura Verena ; Delaney, Mike ; Olave, Mariele Donoso ; Burkart, Andreas ; Jaenicke, Hannah ; Muller, Onno ; Rascher, Uwe ; Roscher, Ribana</creator><creatorcontrib>Kierdorf, Jana ; Junker‐Frohn, Laura Verena ; Delaney, Mike ; Olave, Mariele Donoso ; Burkart, Andreas ; Jaenicke, Hannah ; Muller, Onno ; Rascher, Uwe ; Roscher, Ribana</creatorcontrib><description>In this paper, we present GrowliFlower, a georeferenced, image‐based unmanned aerial vehicle time‐series dataset of two monitored cauliflower fields (0.39 and 0.60 ha) acquired in 2 years, 2020 and 2021. The proposed dataset contains RGB and multispectral orthophotos with coordinates of approximately 14,000 individual cauliflower plants. The coordinates enable the extraction of complete and incomplete time‐series of image patches showing individual plants. The dataset contains the collected phenotypic traits of 740 plants, including the developmental stage and plant and cauliflower size. The harvestable product is completely covered by leaves, thus, plant IDs and coordinates are provided to extract image pairs of plants pre‐ and post‐defoliation. In addition, to facilitate classification, detection, segmentation, instance segmentation, and other similar computer vision tasks, the proposed dataset contains pixel‐accurate leaf and plant instance segmentations, as well as stem annotations. The proposed dataset was created to facilitate the development and evaluation of various machine‐learning approaches. It focuses on the analysis of growth and development of cauliflower and the derivation of phenotypic traits to advance automation in agriculture. Two baseline results of instance segmentation tasks at the plant and leaf level based on labeled instance segmentation data are presented. The complete GrowliFlower dataset is publicly available (http://rs.ipb.uni-bonn.de/data/growliflower/).</description><identifier>ISSN: 1556-4959</identifier><identifier>EISSN: 1556-4967</identifier><identifier>DOI: 10.1002/rob.22122</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>agricultural plant dataset ; Computer vision ; crop development ; crop growth ; Datasets ; Defoliation ; Image annotation ; Image segmentation ; instance segmentation ; Machine learning ; plant monitoring ; Plants (botany) ; UAV ; Unmanned aerial vehicles</subject><ispartof>Journal of field robotics, 2023-03, Vol.40 (2), p.173-192</ispartof><rights>2022 The Authors. published by Wiley Periodicals LLC.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3322-358abf7625c7aa7625d3196542321bbf1cdb7663b3637126a142193f36d14bc73</citedby><cites>FETCH-LOGICAL-c3322-358abf7625c7aa7625d3196542321bbf1cdb7663b3637126a142193f36d14bc73</cites><orcidid>0000-0003-0094-6210 ; 0000-0003-1145-1555</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frob.22122$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frob.22122$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1416,27915,27916,45565,45566</link.rule.ids></links><search><creatorcontrib>Kierdorf, Jana</creatorcontrib><creatorcontrib>Junker‐Frohn, Laura Verena</creatorcontrib><creatorcontrib>Delaney, Mike</creatorcontrib><creatorcontrib>Olave, Mariele Donoso</creatorcontrib><creatorcontrib>Burkart, Andreas</creatorcontrib><creatorcontrib>Jaenicke, Hannah</creatorcontrib><creatorcontrib>Muller, Onno</creatorcontrib><creatorcontrib>Rascher, Uwe</creatorcontrib><creatorcontrib>Roscher, Ribana</creatorcontrib><title>GrowliFlower: An image time‐series dataset for GROWth analysis of cauLIFLOWER</title><title>Journal of field robotics</title><description>In this paper, we present GrowliFlower, a georeferenced, image‐based unmanned aerial vehicle time‐series dataset of two monitored cauliflower fields (0.39 and 0.60 ha) acquired in 2 years, 2020 and 2021. The proposed dataset contains RGB and multispectral orthophotos with coordinates of approximately 14,000 individual cauliflower plants. The coordinates enable the extraction of complete and incomplete time‐series of image patches showing individual plants. The dataset contains the collected phenotypic traits of 740 plants, including the developmental stage and plant and cauliflower size. The harvestable product is completely covered by leaves, thus, plant IDs and coordinates are provided to extract image pairs of plants pre‐ and post‐defoliation. In addition, to facilitate classification, detection, segmentation, instance segmentation, and other similar computer vision tasks, the proposed dataset contains pixel‐accurate leaf and plant instance segmentations, as well as stem annotations. The proposed dataset was created to facilitate the development and evaluation of various machine‐learning approaches. It focuses on the analysis of growth and development of cauliflower and the derivation of phenotypic traits to advance automation in agriculture. Two baseline results of instance segmentation tasks at the plant and leaf level based on labeled instance segmentation data are presented. The complete GrowliFlower dataset is publicly available (http://rs.ipb.uni-bonn.de/data/growliflower/).</description><subject>agricultural plant dataset</subject><subject>Computer vision</subject><subject>crop development</subject><subject>crop growth</subject><subject>Datasets</subject><subject>Defoliation</subject><subject>Image annotation</subject><subject>Image segmentation</subject><subject>instance segmentation</subject><subject>Machine learning</subject><subject>plant monitoring</subject><subject>Plants (botany)</subject><subject>UAV</subject><subject>Unmanned aerial vehicles</subject><issn>1556-4959</issn><issn>1556-4967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kL1OwzAURi0EEqUw8AaWmBjS-ie2E7ZStaVSpEgVqKNlJzakSutip4q68Qg8I09CShAb03eH813dewC4xWiEESJj7_SIEEzIGRhgxngUp1yc_80svQRXIWwQimmSsgHIF961dTWvXWv8A5zsYLVVrwY21dZ8fXwG4ysTYKkaFUwDrfNwscrXzRtUO1UfQxWgs7BQh2w5z_L1bHUNLqyqg7n5zSF4mc-ep09Rli-W00kWFZQSElGWKG0FJ6wQSp2ypDjlLCaUYK0tLkotOKeaciow4QrHBKfUUl7iWBeCDsFdv3fv3fvBhEZu3MF3NwVJhMAJRyljHXXfU4V3IXhj5d53__mjxEiefMnOl_zx1bHjnm2r2hz_B-Uqf-wb3_eDapY</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Kierdorf, Jana</creator><creator>Junker‐Frohn, Laura Verena</creator><creator>Delaney, Mike</creator><creator>Olave, Mariele Donoso</creator><creator>Burkart, Andreas</creator><creator>Jaenicke, Hannah</creator><creator>Muller, Onno</creator><creator>Rascher, Uwe</creator><creator>Roscher, Ribana</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0094-6210</orcidid><orcidid>https://orcid.org/0000-0003-1145-1555</orcidid></search><sort><creationdate>202303</creationdate><title>GrowliFlower: An image time‐series dataset for GROWth analysis of cauLIFLOWER</title><author>Kierdorf, Jana ; Junker‐Frohn, Laura Verena ; Delaney, Mike ; Olave, Mariele Donoso ; Burkart, Andreas ; Jaenicke, Hannah ; Muller, Onno ; Rascher, Uwe ; Roscher, Ribana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3322-358abf7625c7aa7625d3196542321bbf1cdb7663b3637126a142193f36d14bc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>agricultural plant dataset</topic><topic>Computer vision</topic><topic>crop development</topic><topic>crop growth</topic><topic>Datasets</topic><topic>Defoliation</topic><topic>Image annotation</topic><topic>Image segmentation</topic><topic>instance segmentation</topic><topic>Machine learning</topic><topic>plant monitoring</topic><topic>Plants (botany)</topic><topic>UAV</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kierdorf, Jana</creatorcontrib><creatorcontrib>Junker‐Frohn, Laura Verena</creatorcontrib><creatorcontrib>Delaney, Mike</creatorcontrib><creatorcontrib>Olave, Mariele Donoso</creatorcontrib><creatorcontrib>Burkart, Andreas</creatorcontrib><creatorcontrib>Jaenicke, Hannah</creatorcontrib><creatorcontrib>Muller, Onno</creatorcontrib><creatorcontrib>Rascher, Uwe</creatorcontrib><creatorcontrib>Roscher, Ribana</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of field robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kierdorf, Jana</au><au>Junker‐Frohn, Laura Verena</au><au>Delaney, Mike</au><au>Olave, Mariele Donoso</au><au>Burkart, Andreas</au><au>Jaenicke, Hannah</au><au>Muller, Onno</au><au>Rascher, Uwe</au><au>Roscher, Ribana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GrowliFlower: An image time‐series dataset for GROWth analysis of cauLIFLOWER</atitle><jtitle>Journal of field robotics</jtitle><date>2023-03</date><risdate>2023</risdate><volume>40</volume><issue>2</issue><spage>173</spage><epage>192</epage><pages>173-192</pages><issn>1556-4959</issn><eissn>1556-4967</eissn><abstract>In this paper, we present GrowliFlower, a georeferenced, image‐based unmanned aerial vehicle time‐series dataset of two monitored cauliflower fields (0.39 and 0.60 ha) acquired in 2 years, 2020 and 2021. The proposed dataset contains RGB and multispectral orthophotos with coordinates of approximately 14,000 individual cauliflower plants. The coordinates enable the extraction of complete and incomplete time‐series of image patches showing individual plants. The dataset contains the collected phenotypic traits of 740 plants, including the developmental stage and plant and cauliflower size. The harvestable product is completely covered by leaves, thus, plant IDs and coordinates are provided to extract image pairs of plants pre‐ and post‐defoliation. In addition, to facilitate classification, detection, segmentation, instance segmentation, and other similar computer vision tasks, the proposed dataset contains pixel‐accurate leaf and plant instance segmentations, as well as stem annotations. The proposed dataset was created to facilitate the development and evaluation of various machine‐learning approaches. It focuses on the analysis of growth and development of cauliflower and the derivation of phenotypic traits to advance automation in agriculture. Two baseline results of instance segmentation tasks at the plant and leaf level based on labeled instance segmentation data are presented. The complete GrowliFlower dataset is publicly available (http://rs.ipb.uni-bonn.de/data/growliflower/).</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rob.22122</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-0094-6210</orcidid><orcidid>https://orcid.org/0000-0003-1145-1555</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1556-4959
ispartof Journal of field robotics, 2023-03, Vol.40 (2), p.173-192
issn 1556-4959
1556-4967
language eng
recordid cdi_proquest_journals_2771860955
source Wiley Online Library Journals Frontfile Complete
subjects agricultural plant dataset
Computer vision
crop development
crop growth
Datasets
Defoliation
Image annotation
Image segmentation
instance segmentation
Machine learning
plant monitoring
Plants (botany)
UAV
Unmanned aerial vehicles
title GrowliFlower: An image time‐series dataset for GROWth analysis of cauLIFLOWER
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T21%3A19%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GrowliFlower:%20An%20image%20time%E2%80%90series%20dataset%20for%20GROWth%20analysis%20of%20cauLIFLOWER&rft.jtitle=Journal%20of%20field%20robotics&rft.au=Kierdorf,%20Jana&rft.date=2023-03&rft.volume=40&rft.issue=2&rft.spage=173&rft.epage=192&rft.pages=173-192&rft.issn=1556-4959&rft.eissn=1556-4967&rft_id=info:doi/10.1002/rob.22122&rft_dat=%3Cproquest_cross%3E2771860955%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2771860955&rft_id=info:pmid/&rfr_iscdi=true