An EEG-Based Thought Recognition Using Pseudo-Wigner–Kullback–Leibler Deep Neural Classification

Every human being pursues similar circumstances differently and steers them in a disparate manner. Brain activity based on thought detection plays a dominant role while controlling the state of affairs with electroencephalography (EEG) signals. Hence, a comprehensive and specific analysis of EEG sig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circuits, systems, and signal processing systems, and signal processing, 2023-02, Vol.42 (2), p.1063-1082
Hauptverfasser: Thirumarai Selvi, C., Jayasheela, M., Amudha, J., Sudhakar, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1082
container_issue 2
container_start_page 1063
container_title Circuits, systems, and signal processing
container_volume 42
creator Thirumarai Selvi, C.
Jayasheela, M.
Amudha, J.
Sudhakar, R.
description Every human being pursues similar circumstances differently and steers them in a disparate manner. Brain activity based on thought detection plays a dominant role while controlling the state of affairs with electroencephalography (EEG) signals. Hence, a comprehensive and specific analysis of EEG signals is mandatory. Brain activity based on thought detection analysis is essential to comprehend human psychology and mental condition in a specified circumstance. Therefore, developing a more robust method for measuring brain activity and detecting thought with EEG signals is significant. This work proposes the pseudo-Wigner–Kullback–Leibler deep neural classifier (PW-KLDNC) approach for brain activity-based thought detection to make accurate predictions quickly and with low error rates. There are three parts to the PW-KLDNC technique. First, the Gauss–Markov discrete Fourier model is used to pre-process the raw EEG signal. Then, feature extraction is performed using a smooth pseudo-Wigner–Ville model that extracts accurate and relevant features from the computationally effective and noise-minimized EEG signals. We then applied the extracted relevant features to the Kullback–Leibler deep neural classifier for the final classification. On the EEG brainwave dataset, we conducted the experiments and demonstrated the significance of the suggested PW-KLDNC approach comparable to current research studies, wherein we used EEG data to categorize emotional states in subjects. According to experimental results, the proposed technique can speed up emotion recognition for samples of different sizes while maintaining high accuracy and low error rates.
doi_str_mv 10.1007/s00034-022-02164-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2771809507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2771809507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e464a7e95c05323dc38472a382470a715e35e13eb2882d2fc78271d146a0e4133</originalsourceid><addsrcrecordid>eNp9kE1OwzAQRi0EEqVwAVaRWBvGP6mdZSmlICpAqBXsLDeZpIaQFDtZsOMO3JCTkBIkdixGM4v3fSM9Qo4ZnDIAdRYAQEgKnHfDRpKqHTJgsWA01krvkgFwpSlo9rRPDkJ4BmCJTPiAZOMqmk5n9NwGzKLFum6LdRM9YFoXlWtcXUXL4Koiug_YZjV9dEWF_uvj86Yty5VNX7pzjm5Voo8uEDfRLbbeltGktCG43KV223FI9nJbBjz63UOyvJwuJld0fje7noznNBUsaSjKkbQKkziFWHCRpUJLxa3QXCqwisUoYmQCV1xrnvE8VZorljE5soCSCTEkJ33vxtdvLYbGPNetr7qXhivFNCQxqI7iPZX6OgSPudl492r9u2FgtjZNb9N0Ns2PTbMNiT4UOrgq0P9V_5P6BjureEM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771809507</pqid></control><display><type>article</type><title>An EEG-Based Thought Recognition Using Pseudo-Wigner–Kullback–Leibler Deep Neural Classification</title><source>SpringerLink Journals - AutoHoldings</source><creator>Thirumarai Selvi, C. ; Jayasheela, M. ; Amudha, J. ; Sudhakar, R.</creator><creatorcontrib>Thirumarai Selvi, C. ; Jayasheela, M. ; Amudha, J. ; Sudhakar, R.</creatorcontrib><description>Every human being pursues similar circumstances differently and steers them in a disparate manner. Brain activity based on thought detection plays a dominant role while controlling the state of affairs with electroencephalography (EEG) signals. Hence, a comprehensive and specific analysis of EEG signals is mandatory. Brain activity based on thought detection analysis is essential to comprehend human psychology and mental condition in a specified circumstance. Therefore, developing a more robust method for measuring brain activity and detecting thought with EEG signals is significant. This work proposes the pseudo-Wigner–Kullback–Leibler deep neural classifier (PW-KLDNC) approach for brain activity-based thought detection to make accurate predictions quickly and with low error rates. There are three parts to the PW-KLDNC technique. First, the Gauss–Markov discrete Fourier model is used to pre-process the raw EEG signal. Then, feature extraction is performed using a smooth pseudo-Wigner–Ville model that extracts accurate and relevant features from the computationally effective and noise-minimized EEG signals. We then applied the extracted relevant features to the Kullback–Leibler deep neural classifier for the final classification. On the EEG brainwave dataset, we conducted the experiments and demonstrated the significance of the suggested PW-KLDNC approach comparable to current research studies, wherein we used EEG data to categorize emotional states in subjects. According to experimental results, the proposed technique can speed up emotion recognition for samples of different sizes while maintaining high accuracy and low error rates.</description><identifier>ISSN: 0278-081X</identifier><identifier>EISSN: 1531-5878</identifier><identifier>DOI: 10.1007/s00034-022-02164-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Brain ; Circuits and Systems ; Classification ; Classifiers ; Electrical Engineering ; Electroencephalography ; Electronics and Microelectronics ; Emotion recognition ; Emotional factors ; Engineering ; Feature extraction ; Instrumentation ; Measurement methods ; Psychology ; Signal processing ; Signal,Image and Speech Processing</subject><ispartof>Circuits, systems, and signal processing, 2023-02, Vol.42 (2), p.1063-1082</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e464a7e95c05323dc38472a382470a715e35e13eb2882d2fc78271d146a0e4133</citedby><cites>FETCH-LOGICAL-c319t-e464a7e95c05323dc38472a382470a715e35e13eb2882d2fc78271d146a0e4133</cites><orcidid>0000-0002-0238-4947</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00034-022-02164-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00034-022-02164-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Thirumarai Selvi, C.</creatorcontrib><creatorcontrib>Jayasheela, M.</creatorcontrib><creatorcontrib>Amudha, J.</creatorcontrib><creatorcontrib>Sudhakar, R.</creatorcontrib><title>An EEG-Based Thought Recognition Using Pseudo-Wigner–Kullback–Leibler Deep Neural Classification</title><title>Circuits, systems, and signal processing</title><addtitle>Circuits Syst Signal Process</addtitle><description>Every human being pursues similar circumstances differently and steers them in a disparate manner. Brain activity based on thought detection plays a dominant role while controlling the state of affairs with electroencephalography (EEG) signals. Hence, a comprehensive and specific analysis of EEG signals is mandatory. Brain activity based on thought detection analysis is essential to comprehend human psychology and mental condition in a specified circumstance. Therefore, developing a more robust method for measuring brain activity and detecting thought with EEG signals is significant. This work proposes the pseudo-Wigner–Kullback–Leibler deep neural classifier (PW-KLDNC) approach for brain activity-based thought detection to make accurate predictions quickly and with low error rates. There are three parts to the PW-KLDNC technique. First, the Gauss–Markov discrete Fourier model is used to pre-process the raw EEG signal. Then, feature extraction is performed using a smooth pseudo-Wigner–Ville model that extracts accurate and relevant features from the computationally effective and noise-minimized EEG signals. We then applied the extracted relevant features to the Kullback–Leibler deep neural classifier for the final classification. On the EEG brainwave dataset, we conducted the experiments and demonstrated the significance of the suggested PW-KLDNC approach comparable to current research studies, wherein we used EEG data to categorize emotional states in subjects. According to experimental results, the proposed technique can speed up emotion recognition for samples of different sizes while maintaining high accuracy and low error rates.</description><subject>Brain</subject><subject>Circuits and Systems</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Electrical Engineering</subject><subject>Electroencephalography</subject><subject>Electronics and Microelectronics</subject><subject>Emotion recognition</subject><subject>Emotional factors</subject><subject>Engineering</subject><subject>Feature extraction</subject><subject>Instrumentation</subject><subject>Measurement methods</subject><subject>Psychology</subject><subject>Signal processing</subject><subject>Signal,Image and Speech Processing</subject><issn>0278-081X</issn><issn>1531-5878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1OwzAQRi0EEqVwAVaRWBvGP6mdZSmlICpAqBXsLDeZpIaQFDtZsOMO3JCTkBIkdixGM4v3fSM9Qo4ZnDIAdRYAQEgKnHfDRpKqHTJgsWA01krvkgFwpSlo9rRPDkJ4BmCJTPiAZOMqmk5n9NwGzKLFum6LdRM9YFoXlWtcXUXL4Koiug_YZjV9dEWF_uvj86Yty5VNX7pzjm5Voo8uEDfRLbbeltGktCG43KV223FI9nJbBjz63UOyvJwuJld0fje7noznNBUsaSjKkbQKkziFWHCRpUJLxa3QXCqwisUoYmQCV1xrnvE8VZorljE5soCSCTEkJ33vxtdvLYbGPNetr7qXhivFNCQxqI7iPZX6OgSPudl492r9u2FgtjZNb9N0Ns2PTbMNiT4UOrgq0P9V_5P6BjureEM</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Thirumarai Selvi, C.</creator><creator>Jayasheela, M.</creator><creator>Amudha, J.</creator><creator>Sudhakar, R.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-0238-4947</orcidid></search><sort><creationdate>20230201</creationdate><title>An EEG-Based Thought Recognition Using Pseudo-Wigner–Kullback–Leibler Deep Neural Classification</title><author>Thirumarai Selvi, C. ; Jayasheela, M. ; Amudha, J. ; Sudhakar, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e464a7e95c05323dc38472a382470a715e35e13eb2882d2fc78271d146a0e4133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Brain</topic><topic>Circuits and Systems</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Electrical Engineering</topic><topic>Electroencephalography</topic><topic>Electronics and Microelectronics</topic><topic>Emotion recognition</topic><topic>Emotional factors</topic><topic>Engineering</topic><topic>Feature extraction</topic><topic>Instrumentation</topic><topic>Measurement methods</topic><topic>Psychology</topic><topic>Signal processing</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thirumarai Selvi, C.</creatorcontrib><creatorcontrib>Jayasheela, M.</creatorcontrib><creatorcontrib>Amudha, J.</creatorcontrib><creatorcontrib>Sudhakar, R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Circuits, systems, and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thirumarai Selvi, C.</au><au>Jayasheela, M.</au><au>Amudha, J.</au><au>Sudhakar, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An EEG-Based Thought Recognition Using Pseudo-Wigner–Kullback–Leibler Deep Neural Classification</atitle><jtitle>Circuits, systems, and signal processing</jtitle><stitle>Circuits Syst Signal Process</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>42</volume><issue>2</issue><spage>1063</spage><epage>1082</epage><pages>1063-1082</pages><issn>0278-081X</issn><eissn>1531-5878</eissn><abstract>Every human being pursues similar circumstances differently and steers them in a disparate manner. Brain activity based on thought detection plays a dominant role while controlling the state of affairs with electroencephalography (EEG) signals. Hence, a comprehensive and specific analysis of EEG signals is mandatory. Brain activity based on thought detection analysis is essential to comprehend human psychology and mental condition in a specified circumstance. Therefore, developing a more robust method for measuring brain activity and detecting thought with EEG signals is significant. This work proposes the pseudo-Wigner–Kullback–Leibler deep neural classifier (PW-KLDNC) approach for brain activity-based thought detection to make accurate predictions quickly and with low error rates. There are three parts to the PW-KLDNC technique. First, the Gauss–Markov discrete Fourier model is used to pre-process the raw EEG signal. Then, feature extraction is performed using a smooth pseudo-Wigner–Ville model that extracts accurate and relevant features from the computationally effective and noise-minimized EEG signals. We then applied the extracted relevant features to the Kullback–Leibler deep neural classifier for the final classification. On the EEG brainwave dataset, we conducted the experiments and demonstrated the significance of the suggested PW-KLDNC approach comparable to current research studies, wherein we used EEG data to categorize emotional states in subjects. According to experimental results, the proposed technique can speed up emotion recognition for samples of different sizes while maintaining high accuracy and low error rates.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00034-022-02164-7</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-0238-4947</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0278-081X
ispartof Circuits, systems, and signal processing, 2023-02, Vol.42 (2), p.1063-1082
issn 0278-081X
1531-5878
language eng
recordid cdi_proquest_journals_2771809507
source SpringerLink Journals - AutoHoldings
subjects Brain
Circuits and Systems
Classification
Classifiers
Electrical Engineering
Electroencephalography
Electronics and Microelectronics
Emotion recognition
Emotional factors
Engineering
Feature extraction
Instrumentation
Measurement methods
Psychology
Signal processing
Signal,Image and Speech Processing
title An EEG-Based Thought Recognition Using Pseudo-Wigner–Kullback–Leibler Deep Neural Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A52%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20EEG-Based%20Thought%20Recognition%20Using%20Pseudo-Wigner%E2%80%93Kullback%E2%80%93Leibler%20Deep%20Neural%20Classification&rft.jtitle=Circuits,%20systems,%20and%20signal%20processing&rft.au=Thirumarai%20Selvi,%20C.&rft.date=2023-02-01&rft.volume=42&rft.issue=2&rft.spage=1063&rft.epage=1082&rft.pages=1063-1082&rft.issn=0278-081X&rft.eissn=1531-5878&rft_id=info:doi/10.1007/s00034-022-02164-7&rft_dat=%3Cproquest_cross%3E2771809507%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2771809507&rft_id=info:pmid/&rfr_iscdi=true