An EEG-Based Thought Recognition Using Pseudo-Wigner–Kullback–Leibler Deep Neural Classification
Every human being pursues similar circumstances differently and steers them in a disparate manner. Brain activity based on thought detection plays a dominant role while controlling the state of affairs with electroencephalography (EEG) signals. Hence, a comprehensive and specific analysis of EEG sig...
Gespeichert in:
Veröffentlicht in: | Circuits, systems, and signal processing systems, and signal processing, 2023-02, Vol.42 (2), p.1063-1082 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1082 |
---|---|
container_issue | 2 |
container_start_page | 1063 |
container_title | Circuits, systems, and signal processing |
container_volume | 42 |
creator | Thirumarai Selvi, C. Jayasheela, M. Amudha, J. Sudhakar, R. |
description | Every human being pursues similar circumstances differently and steers them in a disparate manner. Brain activity based on thought detection plays a dominant role while controlling the state of affairs with electroencephalography (EEG) signals. Hence, a comprehensive and specific analysis of EEG signals is mandatory. Brain activity based on thought detection analysis is essential to comprehend human psychology and mental condition in a specified circumstance. Therefore, developing a more robust method for measuring brain activity and detecting thought with EEG signals is significant. This work proposes the pseudo-Wigner–Kullback–Leibler deep neural classifier (PW-KLDNC) approach for brain activity-based thought detection to make accurate predictions quickly and with low error rates. There are three parts to the PW-KLDNC technique. First, the Gauss–Markov discrete Fourier model is used to pre-process the raw EEG signal. Then, feature extraction is performed using a smooth pseudo-Wigner–Ville model that extracts accurate and relevant features from the computationally effective and noise-minimized EEG signals. We then applied the extracted relevant features to the Kullback–Leibler deep neural classifier for the final classification. On the EEG brainwave dataset, we conducted the experiments and demonstrated the significance of the suggested PW-KLDNC approach comparable to current research studies, wherein we used EEG data to categorize emotional states in subjects. According to experimental results, the proposed technique can speed up emotion recognition for samples of different sizes while maintaining high accuracy and low error rates. |
doi_str_mv | 10.1007/s00034-022-02164-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2771809507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2771809507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e464a7e95c05323dc38472a382470a715e35e13eb2882d2fc78271d146a0e4133</originalsourceid><addsrcrecordid>eNp9kE1OwzAQRi0EEqVwAVaRWBvGP6mdZSmlICpAqBXsLDeZpIaQFDtZsOMO3JCTkBIkdixGM4v3fSM9Qo4ZnDIAdRYAQEgKnHfDRpKqHTJgsWA01krvkgFwpSlo9rRPDkJ4BmCJTPiAZOMqmk5n9NwGzKLFum6LdRM9YFoXlWtcXUXL4Koiug_YZjV9dEWF_uvj86Yty5VNX7pzjm5Voo8uEDfRLbbeltGktCG43KV223FI9nJbBjz63UOyvJwuJld0fje7noznNBUsaSjKkbQKkziFWHCRpUJLxa3QXCqwisUoYmQCV1xrnvE8VZorljE5soCSCTEkJ33vxtdvLYbGPNetr7qXhivFNCQxqI7iPZX6OgSPudl492r9u2FgtjZNb9N0Ns2PTbMNiT4UOrgq0P9V_5P6BjureEM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771809507</pqid></control><display><type>article</type><title>An EEG-Based Thought Recognition Using Pseudo-Wigner–Kullback–Leibler Deep Neural Classification</title><source>SpringerLink Journals - AutoHoldings</source><creator>Thirumarai Selvi, C. ; Jayasheela, M. ; Amudha, J. ; Sudhakar, R.</creator><creatorcontrib>Thirumarai Selvi, C. ; Jayasheela, M. ; Amudha, J. ; Sudhakar, R.</creatorcontrib><description>Every human being pursues similar circumstances differently and steers them in a disparate manner. Brain activity based on thought detection plays a dominant role while controlling the state of affairs with electroencephalography (EEG) signals. Hence, a comprehensive and specific analysis of EEG signals is mandatory. Brain activity based on thought detection analysis is essential to comprehend human psychology and mental condition in a specified circumstance. Therefore, developing a more robust method for measuring brain activity and detecting thought with EEG signals is significant. This work proposes the pseudo-Wigner–Kullback–Leibler deep neural classifier (PW-KLDNC) approach for brain activity-based thought detection to make accurate predictions quickly and with low error rates. There are three parts to the PW-KLDNC technique. First, the Gauss–Markov discrete Fourier model is used to pre-process the raw EEG signal. Then, feature extraction is performed using a smooth pseudo-Wigner–Ville model that extracts accurate and relevant features from the computationally effective and noise-minimized EEG signals. We then applied the extracted relevant features to the Kullback–Leibler deep neural classifier for the final classification. On the EEG brainwave dataset, we conducted the experiments and demonstrated the significance of the suggested PW-KLDNC approach comparable to current research studies, wherein we used EEG data to categorize emotional states in subjects. According to experimental results, the proposed technique can speed up emotion recognition for samples of different sizes while maintaining high accuracy and low error rates.</description><identifier>ISSN: 0278-081X</identifier><identifier>EISSN: 1531-5878</identifier><identifier>DOI: 10.1007/s00034-022-02164-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Brain ; Circuits and Systems ; Classification ; Classifiers ; Electrical Engineering ; Electroencephalography ; Electronics and Microelectronics ; Emotion recognition ; Emotional factors ; Engineering ; Feature extraction ; Instrumentation ; Measurement methods ; Psychology ; Signal processing ; Signal,Image and Speech Processing</subject><ispartof>Circuits, systems, and signal processing, 2023-02, Vol.42 (2), p.1063-1082</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e464a7e95c05323dc38472a382470a715e35e13eb2882d2fc78271d146a0e4133</citedby><cites>FETCH-LOGICAL-c319t-e464a7e95c05323dc38472a382470a715e35e13eb2882d2fc78271d146a0e4133</cites><orcidid>0000-0002-0238-4947</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00034-022-02164-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00034-022-02164-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Thirumarai Selvi, C.</creatorcontrib><creatorcontrib>Jayasheela, M.</creatorcontrib><creatorcontrib>Amudha, J.</creatorcontrib><creatorcontrib>Sudhakar, R.</creatorcontrib><title>An EEG-Based Thought Recognition Using Pseudo-Wigner–Kullback–Leibler Deep Neural Classification</title><title>Circuits, systems, and signal processing</title><addtitle>Circuits Syst Signal Process</addtitle><description>Every human being pursues similar circumstances differently and steers them in a disparate manner. Brain activity based on thought detection plays a dominant role while controlling the state of affairs with electroencephalography (EEG) signals. Hence, a comprehensive and specific analysis of EEG signals is mandatory. Brain activity based on thought detection analysis is essential to comprehend human psychology and mental condition in a specified circumstance. Therefore, developing a more robust method for measuring brain activity and detecting thought with EEG signals is significant. This work proposes the pseudo-Wigner–Kullback–Leibler deep neural classifier (PW-KLDNC) approach for brain activity-based thought detection to make accurate predictions quickly and with low error rates. There are three parts to the PW-KLDNC technique. First, the Gauss–Markov discrete Fourier model is used to pre-process the raw EEG signal. Then, feature extraction is performed using a smooth pseudo-Wigner–Ville model that extracts accurate and relevant features from the computationally effective and noise-minimized EEG signals. We then applied the extracted relevant features to the Kullback–Leibler deep neural classifier for the final classification. On the EEG brainwave dataset, we conducted the experiments and demonstrated the significance of the suggested PW-KLDNC approach comparable to current research studies, wherein we used EEG data to categorize emotional states in subjects. According to experimental results, the proposed technique can speed up emotion recognition for samples of different sizes while maintaining high accuracy and low error rates.</description><subject>Brain</subject><subject>Circuits and Systems</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Electrical Engineering</subject><subject>Electroencephalography</subject><subject>Electronics and Microelectronics</subject><subject>Emotion recognition</subject><subject>Emotional factors</subject><subject>Engineering</subject><subject>Feature extraction</subject><subject>Instrumentation</subject><subject>Measurement methods</subject><subject>Psychology</subject><subject>Signal processing</subject><subject>Signal,Image and Speech Processing</subject><issn>0278-081X</issn><issn>1531-5878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1OwzAQRi0EEqVwAVaRWBvGP6mdZSmlICpAqBXsLDeZpIaQFDtZsOMO3JCTkBIkdixGM4v3fSM9Qo4ZnDIAdRYAQEgKnHfDRpKqHTJgsWA01krvkgFwpSlo9rRPDkJ4BmCJTPiAZOMqmk5n9NwGzKLFum6LdRM9YFoXlWtcXUXL4Koiug_YZjV9dEWF_uvj86Yty5VNX7pzjm5Voo8uEDfRLbbeltGktCG43KV223FI9nJbBjz63UOyvJwuJld0fje7noznNBUsaSjKkbQKkziFWHCRpUJLxa3QXCqwisUoYmQCV1xrnvE8VZorljE5soCSCTEkJ33vxtdvLYbGPNetr7qXhivFNCQxqI7iPZX6OgSPudl492r9u2FgtjZNb9N0Ns2PTbMNiT4UOrgq0P9V_5P6BjureEM</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Thirumarai Selvi, C.</creator><creator>Jayasheela, M.</creator><creator>Amudha, J.</creator><creator>Sudhakar, R.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-0238-4947</orcidid></search><sort><creationdate>20230201</creationdate><title>An EEG-Based Thought Recognition Using Pseudo-Wigner–Kullback–Leibler Deep Neural Classification</title><author>Thirumarai Selvi, C. ; Jayasheela, M. ; Amudha, J. ; Sudhakar, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e464a7e95c05323dc38472a382470a715e35e13eb2882d2fc78271d146a0e4133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Brain</topic><topic>Circuits and Systems</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Electrical Engineering</topic><topic>Electroencephalography</topic><topic>Electronics and Microelectronics</topic><topic>Emotion recognition</topic><topic>Emotional factors</topic><topic>Engineering</topic><topic>Feature extraction</topic><topic>Instrumentation</topic><topic>Measurement methods</topic><topic>Psychology</topic><topic>Signal processing</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thirumarai Selvi, C.</creatorcontrib><creatorcontrib>Jayasheela, M.</creatorcontrib><creatorcontrib>Amudha, J.</creatorcontrib><creatorcontrib>Sudhakar, R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Circuits, systems, and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thirumarai Selvi, C.</au><au>Jayasheela, M.</au><au>Amudha, J.</au><au>Sudhakar, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An EEG-Based Thought Recognition Using Pseudo-Wigner–Kullback–Leibler Deep Neural Classification</atitle><jtitle>Circuits, systems, and signal processing</jtitle><stitle>Circuits Syst Signal Process</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>42</volume><issue>2</issue><spage>1063</spage><epage>1082</epage><pages>1063-1082</pages><issn>0278-081X</issn><eissn>1531-5878</eissn><abstract>Every human being pursues similar circumstances differently and steers them in a disparate manner. Brain activity based on thought detection plays a dominant role while controlling the state of affairs with electroencephalography (EEG) signals. Hence, a comprehensive and specific analysis of EEG signals is mandatory. Brain activity based on thought detection analysis is essential to comprehend human psychology and mental condition in a specified circumstance. Therefore, developing a more robust method for measuring brain activity and detecting thought with EEG signals is significant. This work proposes the pseudo-Wigner–Kullback–Leibler deep neural classifier (PW-KLDNC) approach for brain activity-based thought detection to make accurate predictions quickly and with low error rates. There are three parts to the PW-KLDNC technique. First, the Gauss–Markov discrete Fourier model is used to pre-process the raw EEG signal. Then, feature extraction is performed using a smooth pseudo-Wigner–Ville model that extracts accurate and relevant features from the computationally effective and noise-minimized EEG signals. We then applied the extracted relevant features to the Kullback–Leibler deep neural classifier for the final classification. On the EEG brainwave dataset, we conducted the experiments and demonstrated the significance of the suggested PW-KLDNC approach comparable to current research studies, wherein we used EEG data to categorize emotional states in subjects. According to experimental results, the proposed technique can speed up emotion recognition for samples of different sizes while maintaining high accuracy and low error rates.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00034-022-02164-7</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-0238-4947</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-081X |
ispartof | Circuits, systems, and signal processing, 2023-02, Vol.42 (2), p.1063-1082 |
issn | 0278-081X 1531-5878 |
language | eng |
recordid | cdi_proquest_journals_2771809507 |
source | SpringerLink Journals - AutoHoldings |
subjects | Brain Circuits and Systems Classification Classifiers Electrical Engineering Electroencephalography Electronics and Microelectronics Emotion recognition Emotional factors Engineering Feature extraction Instrumentation Measurement methods Psychology Signal processing Signal,Image and Speech Processing |
title | An EEG-Based Thought Recognition Using Pseudo-Wigner–Kullback–Leibler Deep Neural Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A52%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20EEG-Based%20Thought%20Recognition%20Using%20Pseudo-Wigner%E2%80%93Kullback%E2%80%93Leibler%20Deep%20Neural%20Classification&rft.jtitle=Circuits,%20systems,%20and%20signal%20processing&rft.au=Thirumarai%20Selvi,%20C.&rft.date=2023-02-01&rft.volume=42&rft.issue=2&rft.spage=1063&rft.epage=1082&rft.pages=1063-1082&rft.issn=0278-081X&rft.eissn=1531-5878&rft_id=info:doi/10.1007/s00034-022-02164-7&rft_dat=%3Cproquest_cross%3E2771809507%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2771809507&rft_id=info:pmid/&rfr_iscdi=true |