Reputation model based on Bayesian theory and eigenvector in complex networks
With the enormous increase in digital relations, many users aspire to have been establishing new relations. The problem arises that the relations of the users cannot distinguish trust relations from distrust ones. Therefore, finding an effective reputation for social relations is an important resear...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2457 |
creator | Zahi, Aseel Hussein hasson, Saad talib |
description | With the enormous increase in digital relations, many users aspire to have been establishing new relations. The problem arises that the relations of the users cannot distinguish trust relations from distrust ones. Therefore, finding an effective reputation for social relations is an important research topic. In this paper, develop reputation model has been provided to improve the reliability of reputation score for social relations. The reputation model classifies into types one is to calculate direct reputation that depends on direct interaction between users, while the second calculates reputation between users according to the recommendation from neighbors. The total reputation score can be produced from the integration between the direct reputation and indirect reputation. |
doi_str_mv | 10.1063/5.0118904 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2771790970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2771790970</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2034-947a6ed86f1e42bf89f54f95f149cbbdbf30f2702eb32c82dc6640140fcf3b7d3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsH_0HAm7B18rGbzVGLX1ARRMFbyG4murXdrMlutf_eSgvePA0Dz_sO8xByymDCoBAX-QQYKzXIPTJiec4yVbBin4wAtMy4FK-H5CilOQDXSpUj8vCE3dDbvgktXQaHC1rZhI5u1iu7xtTYlvbvGOKa2tZRbN6wXWHdh0ibltZh2S3wm7bYf4X4kY7JgbeLhCe7OSYvN9fP07ts9nh7P72cZR0HITMtlS3QlYVnKHnlS-1z6XXumdR1VbnKC_BcAcdK8Lrkri4KCUyCr72olBNjcrbt7WL4HDD1Zh6G2G5OGq4UUxq0gg11vqVS3WxfNF1sljauzSpEk5udKtM5_x_MwPy6_QuIH2Eta6o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2771790970</pqid></control><display><type>conference_proceeding</type><title>Reputation model based on Bayesian theory and eigenvector in complex networks</title><source>AIP Journals Complete</source><creator>Zahi, Aseel Hussein ; hasson, Saad talib</creator><contributor>Fadhel, Fadhel Subhi ; Al-Qabani, Aamena Rasim ; Jber, Nasreen Raheem ; Sultani, Zainab Namh ; Alsabbagh, Akram Abbas ; Khudhair, Bashaer Abbas ; Sadiq, Ibrahim Abdelmahdi</contributor><creatorcontrib>Zahi, Aseel Hussein ; hasson, Saad talib ; Fadhel, Fadhel Subhi ; Al-Qabani, Aamena Rasim ; Jber, Nasreen Raheem ; Sultani, Zainab Namh ; Alsabbagh, Akram Abbas ; Khudhair, Bashaer Abbas ; Sadiq, Ibrahim Abdelmahdi</creatorcontrib><description>With the enormous increase in digital relations, many users aspire to have been establishing new relations. The problem arises that the relations of the users cannot distinguish trust relations from distrust ones. Therefore, finding an effective reputation for social relations is an important research topic. In this paper, develop reputation model has been provided to improve the reliability of reputation score for social relations. The reputation model classifies into types one is to calculate direct reputation that depends on direct interaction between users, while the second calculates reputation between users according to the recommendation from neighbors. The total reputation score can be produced from the integration between the direct reputation and indirect reputation.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0118904</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Eigenvectors</subject><ispartof>AIP conference proceedings, 2023, Vol.2457 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0118904$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Fadhel, Fadhel Subhi</contributor><contributor>Al-Qabani, Aamena Rasim</contributor><contributor>Jber, Nasreen Raheem</contributor><contributor>Sultani, Zainab Namh</contributor><contributor>Alsabbagh, Akram Abbas</contributor><contributor>Khudhair, Bashaer Abbas</contributor><contributor>Sadiq, Ibrahim Abdelmahdi</contributor><creatorcontrib>Zahi, Aseel Hussein</creatorcontrib><creatorcontrib>hasson, Saad talib</creatorcontrib><title>Reputation model based on Bayesian theory and eigenvector in complex networks</title><title>AIP conference proceedings</title><description>With the enormous increase in digital relations, many users aspire to have been establishing new relations. The problem arises that the relations of the users cannot distinguish trust relations from distrust ones. Therefore, finding an effective reputation for social relations is an important research topic. In this paper, develop reputation model has been provided to improve the reliability of reputation score for social relations. The reputation model classifies into types one is to calculate direct reputation that depends on direct interaction between users, while the second calculates reputation between users according to the recommendation from neighbors. The total reputation score can be produced from the integration between the direct reputation and indirect reputation.</description><subject>Eigenvectors</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE1LAzEQhoMoWKsH_0HAm7B18rGbzVGLX1ARRMFbyG4murXdrMlutf_eSgvePA0Dz_sO8xByymDCoBAX-QQYKzXIPTJiec4yVbBin4wAtMy4FK-H5CilOQDXSpUj8vCE3dDbvgktXQaHC1rZhI5u1iu7xtTYlvbvGOKa2tZRbN6wXWHdh0ibltZh2S3wm7bYf4X4kY7JgbeLhCe7OSYvN9fP07ts9nh7P72cZR0HITMtlS3QlYVnKHnlS-1z6XXumdR1VbnKC_BcAcdK8Lrkri4KCUyCr72olBNjcrbt7WL4HDD1Zh6G2G5OGq4UUxq0gg11vqVS3WxfNF1sljauzSpEk5udKtM5_x_MwPy6_QuIH2Eta6o</recordid><startdate>20230202</startdate><enddate>20230202</enddate><creator>Zahi, Aseel Hussein</creator><creator>hasson, Saad talib</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230202</creationdate><title>Reputation model based on Bayesian theory and eigenvector in complex networks</title><author>Zahi, Aseel Hussein ; hasson, Saad talib</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2034-947a6ed86f1e42bf89f54f95f149cbbdbf30f2702eb32c82dc6640140fcf3b7d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Eigenvectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zahi, Aseel Hussein</creatorcontrib><creatorcontrib>hasson, Saad talib</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zahi, Aseel Hussein</au><au>hasson, Saad talib</au><au>Fadhel, Fadhel Subhi</au><au>Al-Qabani, Aamena Rasim</au><au>Jber, Nasreen Raheem</au><au>Sultani, Zainab Namh</au><au>Alsabbagh, Akram Abbas</au><au>Khudhair, Bashaer Abbas</au><au>Sadiq, Ibrahim Abdelmahdi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Reputation model based on Bayesian theory and eigenvector in complex networks</atitle><btitle>AIP conference proceedings</btitle><date>2023-02-02</date><risdate>2023</risdate><volume>2457</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>With the enormous increase in digital relations, many users aspire to have been establishing new relations. The problem arises that the relations of the users cannot distinguish trust relations from distrust ones. Therefore, finding an effective reputation for social relations is an important research topic. In this paper, develop reputation model has been provided to improve the reliability of reputation score for social relations. The reputation model classifies into types one is to calculate direct reputation that depends on direct interaction between users, while the second calculates reputation between users according to the recommendation from neighbors. The total reputation score can be produced from the integration between the direct reputation and indirect reputation.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0118904</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2023, Vol.2457 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2771790970 |
source | AIP Journals Complete |
subjects | Eigenvectors |
title | Reputation model based on Bayesian theory and eigenvector in complex networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A10%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Reputation%20model%20based%20on%20Bayesian%20theory%20and%20eigenvector%20in%20complex%20networks&rft.btitle=AIP%20conference%20proceedings&rft.au=Zahi,%20Aseel%20Hussein&rft.date=2023-02-02&rft.volume=2457&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0118904&rft_dat=%3Cproquest_scita%3E2771790970%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2771790970&rft_id=info:pmid/&rfr_iscdi=true |