In Situ Deformation Topology of COFs with Shortened Channels and High Redox Properties for Li–S Batteries
Covalent organic frameworks (COFs) with various topologies are typically synthesized by selecting and designing connecting units with rich shapes. However, this process is time‐consuming and labour‐intensive. Besides, the tight stacking of COFs layers greatly restrict their structural advantages. It...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2023-02, Vol.33 (6), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 33 |
creator | Wang, Qiaomu Tang, Kaifei Liao, Qiaobo Xu, Yang Xu, Haocheng Wang, Yandong Wang, Peng Meng, Zhen Xi, Kai |
description | Covalent organic frameworks (COFs) with various topologies are typically synthesized by selecting and designing connecting units with rich shapes. However, this process is time‐consuming and labour‐intensive. Besides, the tight stacking of COFs layers greatly restrict their structural advantages. It is crucial to effectively exploit the high porosity and active sites of COFs by topological design. Herein, for the first time, inducing in situ topological changes in sub‐chemometric COFs by adding graphene oxide (GO) without replacing the monomer, is proposed. Surprisingly, GO can slow down the intermolecular stacking and induce rearrangement of COFs nanosheets. The channels of D‐ [4+3] COFs are significantly altered while the stacking of periodically expanded framework is weakened. This not only maximizes the exposure of pore area and polar groups, but also shortens the channels and increases the redox activity, which enables high loading while enhancing host‐guest interactions. This topological transformation to exhibit the structural features of COFs for efficient application is an innovative molecular design strategy.
For the first time, to change the established topology of D‐ [4+3] covalent organic frameworks (COFs) by adding GO, is induced. Benefiting from the weak stacking of the new topology and regular channels, D‐ [4+3] COFs possess more accessible specific surface area and active groups. The new materials prepared as high‐load Li–S battery cathodes effectively suppress polysulphide shuttle and demonstrate high stability. |
doi_str_mv | 10.1002/adfm.202211356 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2771620903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2771620903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3176-c64ba5858b4e125dea2f3fdd2c7f9af87413e0d1bafdfa56c60c3d2852aae89d3</originalsourceid><addsrcrecordid>eNqFkE9PwjAYhxejiYhePTfxPOyfrduOOERIMBjBxFtT1pYVxzrbEuTmd_Ab-kkcweDR0_vmzfP7vckTBNcI9hCE-JYLte5hiDFCJKYnQQdRREMCcXp63NHreXDh3ApClCQk6gRv4xrMtN-AgVTGrrnXpgZz05jKLHfAKJBPhw5stS_BrDTWy1oKkJe8rmXlAK8FGOllCZ6lMB_gyZpGWq-lA20ZmOjvz68ZuOPeS9seL4MzxSsnr35nN3gZ3s_zUTiZPozz_iQsCEpoWNBoweM0TheRRDgWkmNFlBC4SFTGVZpEiEgo0IIroXhMCwoLInAaY85lmgnSDW4OvY017xvpPFuZja3blwwnCaIYZpC0VO9AFdY4Z6VijdVrbncMQbYXyvZC2VFoG8gOga2u5O4fmvUHw8e_7A-lsHvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771620903</pqid></control><display><type>article</type><title>In Situ Deformation Topology of COFs with Shortened Channels and High Redox Properties for Li–S Batteries</title><source>Access via Wiley Online Library</source><creator>Wang, Qiaomu ; Tang, Kaifei ; Liao, Qiaobo ; Xu, Yang ; Xu, Haocheng ; Wang, Yandong ; Wang, Peng ; Meng, Zhen ; Xi, Kai</creator><creatorcontrib>Wang, Qiaomu ; Tang, Kaifei ; Liao, Qiaobo ; Xu, Yang ; Xu, Haocheng ; Wang, Yandong ; Wang, Peng ; Meng, Zhen ; Xi, Kai</creatorcontrib><description>Covalent organic frameworks (COFs) with various topologies are typically synthesized by selecting and designing connecting units with rich shapes. However, this process is time‐consuming and labour‐intensive. Besides, the tight stacking of COFs layers greatly restrict their structural advantages. It is crucial to effectively exploit the high porosity and active sites of COFs by topological design. Herein, for the first time, inducing in situ topological changes in sub‐chemometric COFs by adding graphene oxide (GO) without replacing the monomer, is proposed. Surprisingly, GO can slow down the intermolecular stacking and induce rearrangement of COFs nanosheets. The channels of D‐ [4+3] COFs are significantly altered while the stacking of periodically expanded framework is weakened. This not only maximizes the exposure of pore area and polar groups, but also shortens the channels and increases the redox activity, which enables high loading while enhancing host‐guest interactions. This topological transformation to exhibit the structural features of COFs for efficient application is an innovative molecular design strategy.
For the first time, to change the established topology of D‐ [4+3] covalent organic frameworks (COFs) by adding GO, is induced. Benefiting from the weak stacking of the new topology and regular channels, D‐ [4+3] COFs possess more accessible specific surface area and active groups. The new materials prepared as high‐load Li–S battery cathodes effectively suppress polysulphide shuttle and demonstrate high stability.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202211356</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Channels ; covalent organic frameworks ; Graphene ; high redox ; lithium–sulfur batteries ; Materials science ; Stacking ; stacking weakening ; Topology ; topology deformations</subject><ispartof>Advanced functional materials, 2023-02, Vol.33 (6), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3176-c64ba5858b4e125dea2f3fdd2c7f9af87413e0d1bafdfa56c60c3d2852aae89d3</citedby><cites>FETCH-LOGICAL-c3176-c64ba5858b4e125dea2f3fdd2c7f9af87413e0d1bafdfa56c60c3d2852aae89d3</cites><orcidid>0000-0002-8770-5956</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202211356$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202211356$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wang, Qiaomu</creatorcontrib><creatorcontrib>Tang, Kaifei</creatorcontrib><creatorcontrib>Liao, Qiaobo</creatorcontrib><creatorcontrib>Xu, Yang</creatorcontrib><creatorcontrib>Xu, Haocheng</creatorcontrib><creatorcontrib>Wang, Yandong</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Meng, Zhen</creatorcontrib><creatorcontrib>Xi, Kai</creatorcontrib><title>In Situ Deformation Topology of COFs with Shortened Channels and High Redox Properties for Li–S Batteries</title><title>Advanced functional materials</title><description>Covalent organic frameworks (COFs) with various topologies are typically synthesized by selecting and designing connecting units with rich shapes. However, this process is time‐consuming and labour‐intensive. Besides, the tight stacking of COFs layers greatly restrict their structural advantages. It is crucial to effectively exploit the high porosity and active sites of COFs by topological design. Herein, for the first time, inducing in situ topological changes in sub‐chemometric COFs by adding graphene oxide (GO) without replacing the monomer, is proposed. Surprisingly, GO can slow down the intermolecular stacking and induce rearrangement of COFs nanosheets. The channels of D‐ [4+3] COFs are significantly altered while the stacking of periodically expanded framework is weakened. This not only maximizes the exposure of pore area and polar groups, but also shortens the channels and increases the redox activity, which enables high loading while enhancing host‐guest interactions. This topological transformation to exhibit the structural features of COFs for efficient application is an innovative molecular design strategy.
For the first time, to change the established topology of D‐ [4+3] covalent organic frameworks (COFs) by adding GO, is induced. Benefiting from the weak stacking of the new topology and regular channels, D‐ [4+3] COFs possess more accessible specific surface area and active groups. The new materials prepared as high‐load Li–S battery cathodes effectively suppress polysulphide shuttle and demonstrate high stability.</description><subject>Channels</subject><subject>covalent organic frameworks</subject><subject>Graphene</subject><subject>high redox</subject><subject>lithium–sulfur batteries</subject><subject>Materials science</subject><subject>Stacking</subject><subject>stacking weakening</subject><subject>Topology</subject><subject>topology deformations</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkE9PwjAYhxejiYhePTfxPOyfrduOOERIMBjBxFtT1pYVxzrbEuTmd_Ab-kkcweDR0_vmzfP7vckTBNcI9hCE-JYLte5hiDFCJKYnQQdRREMCcXp63NHreXDh3ApClCQk6gRv4xrMtN-AgVTGrrnXpgZz05jKLHfAKJBPhw5stS_BrDTWy1oKkJe8rmXlAK8FGOllCZ6lMB_gyZpGWq-lA20ZmOjvz68ZuOPeS9seL4MzxSsnr35nN3gZ3s_zUTiZPozz_iQsCEpoWNBoweM0TheRRDgWkmNFlBC4SFTGVZpEiEgo0IIroXhMCwoLInAaY85lmgnSDW4OvY017xvpPFuZja3blwwnCaIYZpC0VO9AFdY4Z6VijdVrbncMQbYXyvZC2VFoG8gOga2u5O4fmvUHw8e_7A-lsHvA</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Wang, Qiaomu</creator><creator>Tang, Kaifei</creator><creator>Liao, Qiaobo</creator><creator>Xu, Yang</creator><creator>Xu, Haocheng</creator><creator>Wang, Yandong</creator><creator>Wang, Peng</creator><creator>Meng, Zhen</creator><creator>Xi, Kai</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8770-5956</orcidid></search><sort><creationdate>20230201</creationdate><title>In Situ Deformation Topology of COFs with Shortened Channels and High Redox Properties for Li–S Batteries</title><author>Wang, Qiaomu ; Tang, Kaifei ; Liao, Qiaobo ; Xu, Yang ; Xu, Haocheng ; Wang, Yandong ; Wang, Peng ; Meng, Zhen ; Xi, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3176-c64ba5858b4e125dea2f3fdd2c7f9af87413e0d1bafdfa56c60c3d2852aae89d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Channels</topic><topic>covalent organic frameworks</topic><topic>Graphene</topic><topic>high redox</topic><topic>lithium–sulfur batteries</topic><topic>Materials science</topic><topic>Stacking</topic><topic>stacking weakening</topic><topic>Topology</topic><topic>topology deformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qiaomu</creatorcontrib><creatorcontrib>Tang, Kaifei</creatorcontrib><creatorcontrib>Liao, Qiaobo</creatorcontrib><creatorcontrib>Xu, Yang</creatorcontrib><creatorcontrib>Xu, Haocheng</creatorcontrib><creatorcontrib>Wang, Yandong</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Meng, Zhen</creatorcontrib><creatorcontrib>Xi, Kai</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qiaomu</au><au>Tang, Kaifei</au><au>Liao, Qiaobo</au><au>Xu, Yang</au><au>Xu, Haocheng</au><au>Wang, Yandong</au><au>Wang, Peng</au><au>Meng, Zhen</au><au>Xi, Kai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Deformation Topology of COFs with Shortened Channels and High Redox Properties for Li–S Batteries</atitle><jtitle>Advanced functional materials</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>33</volume><issue>6</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Covalent organic frameworks (COFs) with various topologies are typically synthesized by selecting and designing connecting units with rich shapes. However, this process is time‐consuming and labour‐intensive. Besides, the tight stacking of COFs layers greatly restrict their structural advantages. It is crucial to effectively exploit the high porosity and active sites of COFs by topological design. Herein, for the first time, inducing in situ topological changes in sub‐chemometric COFs by adding graphene oxide (GO) without replacing the monomer, is proposed. Surprisingly, GO can slow down the intermolecular stacking and induce rearrangement of COFs nanosheets. The channels of D‐ [4+3] COFs are significantly altered while the stacking of periodically expanded framework is weakened. This not only maximizes the exposure of pore area and polar groups, but also shortens the channels and increases the redox activity, which enables high loading while enhancing host‐guest interactions. This topological transformation to exhibit the structural features of COFs for efficient application is an innovative molecular design strategy.
For the first time, to change the established topology of D‐ [4+3] covalent organic frameworks (COFs) by adding GO, is induced. Benefiting from the weak stacking of the new topology and regular channels, D‐ [4+3] COFs possess more accessible specific surface area and active groups. The new materials prepared as high‐load Li–S battery cathodes effectively suppress polysulphide shuttle and demonstrate high stability.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202211356</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8770-5956</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2023-02, Vol.33 (6), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2771620903 |
source | Access via Wiley Online Library |
subjects | Channels covalent organic frameworks Graphene high redox lithium–sulfur batteries Materials science Stacking stacking weakening Topology topology deformations |
title | In Situ Deformation Topology of COFs with Shortened Channels and High Redox Properties for Li–S Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A59%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Deformation%20Topology%20of%20COFs%20with%20Shortened%20Channels%20and%20High%20Redox%20Properties%20for%20Li%E2%80%93S%20Batteries&rft.jtitle=Advanced%20functional%20materials&rft.au=Wang,%20Qiaomu&rft.date=2023-02-01&rft.volume=33&rft.issue=6&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202211356&rft_dat=%3Cproquest_cross%3E2771620903%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2771620903&rft_id=info:pmid/&rfr_iscdi=true |