Toward Efficient Process Monitoring Using Spatiotemporal PCA

Principal component analysis (PCA) has shown its high efficiency in process monitoring (PM). However, most of the existing PCA-based PM approaches only consider the spatial prior and ignore the temporal prior. Therefore, in this brief, we propose a novel PM framework using spatiotemporal PCA (STPCA)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2023-02, Vol.70 (2), p.551-555
Hauptverfasser: Li, Yunhui, Xiu, Xianchao, Liu, Wanquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 555
container_issue 2
container_start_page 551
container_title IEEE transactions on circuits and systems. II, Express briefs
container_volume 70
creator Li, Yunhui
Xiu, Xianchao
Liu, Wanquan
description Principal component analysis (PCA) has shown its high efficiency in process monitoring (PM). However, most of the existing PCA-based PM approaches only consider the spatial prior and ignore the temporal prior. Therefore, in this brief, we propose a novel PM framework using spatiotemporal PCA (STPCA), which incorporates both spatial and temporal priors. Technically, the spatial prior is integrated to preserve the cause-effect relationship of process variables, and the temporal prior is embedded to maintain the geometric structure of process samples. Moreover, an efficient optimization algorithm is developed using the alternating direction method of multipliers (ADMM) in a symmetric Gauss-Seidel (sGS) manner. Finally, the improved monitoring performance is verified on the benchmark Tennessee Eastman (TE) process. In particular, compared with PCA, the fault detection rate of fault IDV(20) is increased by 9.88%. This suggests that the proposed framework is promising for PM.
doi_str_mv 10.1109/TCSII.2022.3171205
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2771532516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9765518</ieee_id><sourcerecordid>2771532516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-77ead1d79b926cb53aaed2dbb55192a35104027b135a62690f0a882e8ff3a01a3</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKd_QF8KPnfm3ixNA76MMnUwcbDtOaRtIhlbU5MO8d_buuHLvffhnHsOHyH3QCcAVD5tivViMUGKOGEgACm_ICPgPE-ZkHA53FOZCjEV1-Qmxh2lKCnDEXne-G8d6mRuraucabpkFXxlYkzefeM6H1zzmWzjMNet7pzvzKH1Qe-TVTG7JVdW76O5O-8x2b7MN8Vbuvx4XRSzZVoh8q6PNbqGWshSYlaVnGltaqzLknOQqBkHOqUoSmBcZ5hJaqnOczS5tUxT0GxMHk9_2-C_jiZ2auePoekjFQoBnCGHrFfhSVUFH2MwVrXBHXT4UUDVQEn9UVIDJXWm1JseTiZnjPk3SJH13XL2C1gOYmI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771532516</pqid></control><display><type>article</type><title>Toward Efficient Process Monitoring Using Spatiotemporal PCA</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Yunhui ; Xiu, Xianchao ; Liu, Wanquan</creator><creatorcontrib>Li, Yunhui ; Xiu, Xianchao ; Liu, Wanquan</creatorcontrib><description>Principal component analysis (PCA) has shown its high efficiency in process monitoring (PM). However, most of the existing PCA-based PM approaches only consider the spatial prior and ignore the temporal prior. Therefore, in this brief, we propose a novel PM framework using spatiotemporal PCA (STPCA), which incorporates both spatial and temporal priors. Technically, the spatial prior is integrated to preserve the cause-effect relationship of process variables, and the temporal prior is embedded to maintain the geometric structure of process samples. Moreover, an efficient optimization algorithm is developed using the alternating direction method of multipliers (ADMM) in a symmetric Gauss-Seidel (sGS) manner. Finally, the improved monitoring performance is verified on the benchmark Tennessee Eastman (TE) process. In particular, compared with PCA, the fault detection rate of fault IDV(20) is increased by 9.88%. This suggests that the proposed framework is promising for PM.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2022.3171205</identifier><identifier>CODEN: ITCSFK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Convergence ; Fault detection ; Laplace equations ; Monitoring ; Optimization ; Optimization algorithm ; Principal component analysis ; principal component analysis (PCA) ; Principal components analysis ; Process monitoring ; process monitoring (PM) ; Process variables ; Signal processing algorithms ; Spatiotemporal phenomena ; spatiotemporal prior</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2023-02, Vol.70 (2), p.551-555</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c225t-77ead1d79b926cb53aaed2dbb55192a35104027b135a62690f0a882e8ff3a01a3</citedby><cites>FETCH-LOGICAL-c225t-77ead1d79b926cb53aaed2dbb55192a35104027b135a62690f0a882e8ff3a01a3</cites><orcidid>0000-0003-4910-353X ; 0000-0002-3562-3406 ; 0000-0002-3374-7413</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9765518$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9765518$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Yunhui</creatorcontrib><creatorcontrib>Xiu, Xianchao</creatorcontrib><creatorcontrib>Liu, Wanquan</creatorcontrib><title>Toward Efficient Process Monitoring Using Spatiotemporal PCA</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description>Principal component analysis (PCA) has shown its high efficiency in process monitoring (PM). However, most of the existing PCA-based PM approaches only consider the spatial prior and ignore the temporal prior. Therefore, in this brief, we propose a novel PM framework using spatiotemporal PCA (STPCA), which incorporates both spatial and temporal priors. Technically, the spatial prior is integrated to preserve the cause-effect relationship of process variables, and the temporal prior is embedded to maintain the geometric structure of process samples. Moreover, an efficient optimization algorithm is developed using the alternating direction method of multipliers (ADMM) in a symmetric Gauss-Seidel (sGS) manner. Finally, the improved monitoring performance is verified on the benchmark Tennessee Eastman (TE) process. In particular, compared with PCA, the fault detection rate of fault IDV(20) is increased by 9.88%. This suggests that the proposed framework is promising for PM.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>Fault detection</subject><subject>Laplace equations</subject><subject>Monitoring</subject><subject>Optimization</subject><subject>Optimization algorithm</subject><subject>Principal component analysis</subject><subject>principal component analysis (PCA)</subject><subject>Principal components analysis</subject><subject>Process monitoring</subject><subject>process monitoring (PM)</subject><subject>Process variables</subject><subject>Signal processing algorithms</subject><subject>Spatiotemporal phenomena</subject><subject>spatiotemporal prior</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAUhYMoOKd_QF8KPnfm3ixNA76MMnUwcbDtOaRtIhlbU5MO8d_buuHLvffhnHsOHyH3QCcAVD5tivViMUGKOGEgACm_ICPgPE-ZkHA53FOZCjEV1-Qmxh2lKCnDEXne-G8d6mRuraucabpkFXxlYkzefeM6H1zzmWzjMNet7pzvzKH1Qe-TVTG7JVdW76O5O-8x2b7MN8Vbuvx4XRSzZVoh8q6PNbqGWshSYlaVnGltaqzLknOQqBkHOqUoSmBcZ5hJaqnOczS5tUxT0GxMHk9_2-C_jiZ2auePoekjFQoBnCGHrFfhSVUFH2MwVrXBHXT4UUDVQEn9UVIDJXWm1JseTiZnjPk3SJH13XL2C1gOYmI</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Li, Yunhui</creator><creator>Xiu, Xianchao</creator><creator>Liu, Wanquan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4910-353X</orcidid><orcidid>https://orcid.org/0000-0002-3562-3406</orcidid><orcidid>https://orcid.org/0000-0002-3374-7413</orcidid></search><sort><creationdate>20230201</creationdate><title>Toward Efficient Process Monitoring Using Spatiotemporal PCA</title><author>Li, Yunhui ; Xiu, Xianchao ; Liu, Wanquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-77ead1d79b926cb53aaed2dbb55192a35104027b135a62690f0a882e8ff3a01a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>Fault detection</topic><topic>Laplace equations</topic><topic>Monitoring</topic><topic>Optimization</topic><topic>Optimization algorithm</topic><topic>Principal component analysis</topic><topic>principal component analysis (PCA)</topic><topic>Principal components analysis</topic><topic>Process monitoring</topic><topic>process monitoring (PM)</topic><topic>Process variables</topic><topic>Signal processing algorithms</topic><topic>Spatiotemporal phenomena</topic><topic>spatiotemporal prior</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yunhui</creatorcontrib><creatorcontrib>Xiu, Xianchao</creatorcontrib><creatorcontrib>Liu, Wanquan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Yunhui</au><au>Xiu, Xianchao</au><au>Liu, Wanquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Efficient Process Monitoring Using Spatiotemporal PCA</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>70</volume><issue>2</issue><spage>551</spage><epage>555</epage><pages>551-555</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ITCSFK</coden><abstract>Principal component analysis (PCA) has shown its high efficiency in process monitoring (PM). However, most of the existing PCA-based PM approaches only consider the spatial prior and ignore the temporal prior. Therefore, in this brief, we propose a novel PM framework using spatiotemporal PCA (STPCA), which incorporates both spatial and temporal priors. Technically, the spatial prior is integrated to preserve the cause-effect relationship of process variables, and the temporal prior is embedded to maintain the geometric structure of process samples. Moreover, an efficient optimization algorithm is developed using the alternating direction method of multipliers (ADMM) in a symmetric Gauss-Seidel (sGS) manner. Finally, the improved monitoring performance is verified on the benchmark Tennessee Eastman (TE) process. In particular, compared with PCA, the fault detection rate of fault IDV(20) is increased by 9.88%. This suggests that the proposed framework is promising for PM.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2022.3171205</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-4910-353X</orcidid><orcidid>https://orcid.org/0000-0002-3562-3406</orcidid><orcidid>https://orcid.org/0000-0002-3374-7413</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-7747
ispartof IEEE transactions on circuits and systems. II, Express briefs, 2023-02, Vol.70 (2), p.551-555
issn 1549-7747
1558-3791
language eng
recordid cdi_proquest_journals_2771532516
source IEEE Electronic Library (IEL)
subjects Algorithms
Convergence
Fault detection
Laplace equations
Monitoring
Optimization
Optimization algorithm
Principal component analysis
principal component analysis (PCA)
Principal components analysis
Process monitoring
process monitoring (PM)
Process variables
Signal processing algorithms
Spatiotemporal phenomena
spatiotemporal prior
title Toward Efficient Process Monitoring Using Spatiotemporal PCA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T08%3A54%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Efficient%20Process%20Monitoring%20Using%20Spatiotemporal%20PCA&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Li,%20Yunhui&rft.date=2023-02-01&rft.volume=70&rft.issue=2&rft.spage=551&rft.epage=555&rft.pages=551-555&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ITCSFK&rft_id=info:doi/10.1109/TCSII.2022.3171205&rft_dat=%3Cproquest_RIE%3E2771532516%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2771532516&rft_id=info:pmid/&rft_ieee_id=9765518&rfr_iscdi=true