Toward Efficient Process Monitoring Using Spatiotemporal PCA
Principal component analysis (PCA) has shown its high efficiency in process monitoring (PM). However, most of the existing PCA-based PM approaches only consider the spatial prior and ignore the temporal prior. Therefore, in this brief, we propose a novel PM framework using spatiotemporal PCA (STPCA)...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2023-02, Vol.70 (2), p.551-555 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 555 |
---|---|
container_issue | 2 |
container_start_page | 551 |
container_title | IEEE transactions on circuits and systems. II, Express briefs |
container_volume | 70 |
creator | Li, Yunhui Xiu, Xianchao Liu, Wanquan |
description | Principal component analysis (PCA) has shown its high efficiency in process monitoring (PM). However, most of the existing PCA-based PM approaches only consider the spatial prior and ignore the temporal prior. Therefore, in this brief, we propose a novel PM framework using spatiotemporal PCA (STPCA), which incorporates both spatial and temporal priors. Technically, the spatial prior is integrated to preserve the cause-effect relationship of process variables, and the temporal prior is embedded to maintain the geometric structure of process samples. Moreover, an efficient optimization algorithm is developed using the alternating direction method of multipliers (ADMM) in a symmetric Gauss-Seidel (sGS) manner. Finally, the improved monitoring performance is verified on the benchmark Tennessee Eastman (TE) process. In particular, compared with PCA, the fault detection rate of fault IDV(20) is increased by 9.88%. This suggests that the proposed framework is promising for PM. |
doi_str_mv | 10.1109/TCSII.2022.3171205 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2771532516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9765518</ieee_id><sourcerecordid>2771532516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-77ead1d79b926cb53aaed2dbb55192a35104027b135a62690f0a882e8ff3a01a3</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKd_QF8KPnfm3ixNA76MMnUwcbDtOaRtIhlbU5MO8d_buuHLvffhnHsOHyH3QCcAVD5tivViMUGKOGEgACm_ICPgPE-ZkHA53FOZCjEV1-Qmxh2lKCnDEXne-G8d6mRuraucabpkFXxlYkzefeM6H1zzmWzjMNet7pzvzKH1Qe-TVTG7JVdW76O5O-8x2b7MN8Vbuvx4XRSzZVoh8q6PNbqGWshSYlaVnGltaqzLknOQqBkHOqUoSmBcZ5hJaqnOczS5tUxT0GxMHk9_2-C_jiZ2auePoekjFQoBnCGHrFfhSVUFH2MwVrXBHXT4UUDVQEn9UVIDJXWm1JseTiZnjPk3SJH13XL2C1gOYmI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771532516</pqid></control><display><type>article</type><title>Toward Efficient Process Monitoring Using Spatiotemporal PCA</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Yunhui ; Xiu, Xianchao ; Liu, Wanquan</creator><creatorcontrib>Li, Yunhui ; Xiu, Xianchao ; Liu, Wanquan</creatorcontrib><description>Principal component analysis (PCA) has shown its high efficiency in process monitoring (PM). However, most of the existing PCA-based PM approaches only consider the spatial prior and ignore the temporal prior. Therefore, in this brief, we propose a novel PM framework using spatiotemporal PCA (STPCA), which incorporates both spatial and temporal priors. Technically, the spatial prior is integrated to preserve the cause-effect relationship of process variables, and the temporal prior is embedded to maintain the geometric structure of process samples. Moreover, an efficient optimization algorithm is developed using the alternating direction method of multipliers (ADMM) in a symmetric Gauss-Seidel (sGS) manner. Finally, the improved monitoring performance is verified on the benchmark Tennessee Eastman (TE) process. In particular, compared with PCA, the fault detection rate of fault IDV(20) is increased by 9.88%. This suggests that the proposed framework is promising for PM.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2022.3171205</identifier><identifier>CODEN: ITCSFK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Convergence ; Fault detection ; Laplace equations ; Monitoring ; Optimization ; Optimization algorithm ; Principal component analysis ; principal component analysis (PCA) ; Principal components analysis ; Process monitoring ; process monitoring (PM) ; Process variables ; Signal processing algorithms ; Spatiotemporal phenomena ; spatiotemporal prior</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2023-02, Vol.70 (2), p.551-555</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c225t-77ead1d79b926cb53aaed2dbb55192a35104027b135a62690f0a882e8ff3a01a3</citedby><cites>FETCH-LOGICAL-c225t-77ead1d79b926cb53aaed2dbb55192a35104027b135a62690f0a882e8ff3a01a3</cites><orcidid>0000-0003-4910-353X ; 0000-0002-3562-3406 ; 0000-0002-3374-7413</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9765518$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9765518$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Yunhui</creatorcontrib><creatorcontrib>Xiu, Xianchao</creatorcontrib><creatorcontrib>Liu, Wanquan</creatorcontrib><title>Toward Efficient Process Monitoring Using Spatiotemporal PCA</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description>Principal component analysis (PCA) has shown its high efficiency in process monitoring (PM). However, most of the existing PCA-based PM approaches only consider the spatial prior and ignore the temporal prior. Therefore, in this brief, we propose a novel PM framework using spatiotemporal PCA (STPCA), which incorporates both spatial and temporal priors. Technically, the spatial prior is integrated to preserve the cause-effect relationship of process variables, and the temporal prior is embedded to maintain the geometric structure of process samples. Moreover, an efficient optimization algorithm is developed using the alternating direction method of multipliers (ADMM) in a symmetric Gauss-Seidel (sGS) manner. Finally, the improved monitoring performance is verified on the benchmark Tennessee Eastman (TE) process. In particular, compared with PCA, the fault detection rate of fault IDV(20) is increased by 9.88%. This suggests that the proposed framework is promising for PM.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>Fault detection</subject><subject>Laplace equations</subject><subject>Monitoring</subject><subject>Optimization</subject><subject>Optimization algorithm</subject><subject>Principal component analysis</subject><subject>principal component analysis (PCA)</subject><subject>Principal components analysis</subject><subject>Process monitoring</subject><subject>process monitoring (PM)</subject><subject>Process variables</subject><subject>Signal processing algorithms</subject><subject>Spatiotemporal phenomena</subject><subject>spatiotemporal prior</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAUhYMoOKd_QF8KPnfm3ixNA76MMnUwcbDtOaRtIhlbU5MO8d_buuHLvffhnHsOHyH3QCcAVD5tivViMUGKOGEgACm_ICPgPE-ZkHA53FOZCjEV1-Qmxh2lKCnDEXne-G8d6mRuraucabpkFXxlYkzefeM6H1zzmWzjMNet7pzvzKH1Qe-TVTG7JVdW76O5O-8x2b7MN8Vbuvx4XRSzZVoh8q6PNbqGWshSYlaVnGltaqzLknOQqBkHOqUoSmBcZ5hJaqnOczS5tUxT0GxMHk9_2-C_jiZ2auePoekjFQoBnCGHrFfhSVUFH2MwVrXBHXT4UUDVQEn9UVIDJXWm1JseTiZnjPk3SJH13XL2C1gOYmI</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Li, Yunhui</creator><creator>Xiu, Xianchao</creator><creator>Liu, Wanquan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4910-353X</orcidid><orcidid>https://orcid.org/0000-0002-3562-3406</orcidid><orcidid>https://orcid.org/0000-0002-3374-7413</orcidid></search><sort><creationdate>20230201</creationdate><title>Toward Efficient Process Monitoring Using Spatiotemporal PCA</title><author>Li, Yunhui ; Xiu, Xianchao ; Liu, Wanquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-77ead1d79b926cb53aaed2dbb55192a35104027b135a62690f0a882e8ff3a01a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>Fault detection</topic><topic>Laplace equations</topic><topic>Monitoring</topic><topic>Optimization</topic><topic>Optimization algorithm</topic><topic>Principal component analysis</topic><topic>principal component analysis (PCA)</topic><topic>Principal components analysis</topic><topic>Process monitoring</topic><topic>process monitoring (PM)</topic><topic>Process variables</topic><topic>Signal processing algorithms</topic><topic>Spatiotemporal phenomena</topic><topic>spatiotemporal prior</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yunhui</creatorcontrib><creatorcontrib>Xiu, Xianchao</creatorcontrib><creatorcontrib>Liu, Wanquan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Yunhui</au><au>Xiu, Xianchao</au><au>Liu, Wanquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Efficient Process Monitoring Using Spatiotemporal PCA</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>70</volume><issue>2</issue><spage>551</spage><epage>555</epage><pages>551-555</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ITCSFK</coden><abstract>Principal component analysis (PCA) has shown its high efficiency in process monitoring (PM). However, most of the existing PCA-based PM approaches only consider the spatial prior and ignore the temporal prior. Therefore, in this brief, we propose a novel PM framework using spatiotemporal PCA (STPCA), which incorporates both spatial and temporal priors. Technically, the spatial prior is integrated to preserve the cause-effect relationship of process variables, and the temporal prior is embedded to maintain the geometric structure of process samples. Moreover, an efficient optimization algorithm is developed using the alternating direction method of multipliers (ADMM) in a symmetric Gauss-Seidel (sGS) manner. Finally, the improved monitoring performance is verified on the benchmark Tennessee Eastman (TE) process. In particular, compared with PCA, the fault detection rate of fault IDV(20) is increased by 9.88%. This suggests that the proposed framework is promising for PM.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2022.3171205</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-4910-353X</orcidid><orcidid>https://orcid.org/0000-0002-3562-3406</orcidid><orcidid>https://orcid.org/0000-0002-3374-7413</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1549-7747 |
ispartof | IEEE transactions on circuits and systems. II, Express briefs, 2023-02, Vol.70 (2), p.551-555 |
issn | 1549-7747 1558-3791 |
language | eng |
recordid | cdi_proquest_journals_2771532516 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Convergence Fault detection Laplace equations Monitoring Optimization Optimization algorithm Principal component analysis principal component analysis (PCA) Principal components analysis Process monitoring process monitoring (PM) Process variables Signal processing algorithms Spatiotemporal phenomena spatiotemporal prior |
title | Toward Efficient Process Monitoring Using Spatiotemporal PCA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T08%3A54%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Efficient%20Process%20Monitoring%20Using%20Spatiotemporal%20PCA&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Li,%20Yunhui&rft.date=2023-02-01&rft.volume=70&rft.issue=2&rft.spage=551&rft.epage=555&rft.pages=551-555&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ITCSFK&rft_id=info:doi/10.1109/TCSII.2022.3171205&rft_dat=%3Cproquest_RIE%3E2771532516%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2771532516&rft_id=info:pmid/&rft_ieee_id=9765518&rfr_iscdi=true |