Effect of Strain Localization on the Mechanical Properties from Nonuniform Grain Size Distribution of Ultralow Carbon Steel

The effect of the bimodal grain size distribution in the range of several tens of micrometers is studied to investigate the mechanical properties of metallic materials with single‐phase ferritic microstructure. The previous studies on the bimodal distribution of grain size have been performed on mat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Steel research international 2023-02, Vol.94 (2), p.n/a
Hauptverfasser: Kang, Chun Gu, Yoon, Jeong Whan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page
container_title Steel research international
container_volume 94
creator Kang, Chun Gu
Yoon, Jeong Whan
description The effect of the bimodal grain size distribution in the range of several tens of micrometers is studied to investigate the mechanical properties of metallic materials with single‐phase ferritic microstructure. The previous studies on the bimodal distribution of grain size have been performed on materials with nanocrystalline, ultrafine, or multiphase microstructures, and have generally reported that the mixed structure of fine and coarse grains improves the ductility of the material, because the coarser grains preferentially accommodate deformation. However, herein, the coarse grains do not accept the deformation well during plastic deformation and cause nonuniform deformation, which lowers the work hardening coefficient and accelerates necking of sheet. The influence of the bimodal grain size distribution on the mechanical properties is evaluated using tensile and various formability tests. Microstructural changes before and after deformation are tracked by electron backscatter diffraction. Herein, the bimodal distribution is artificially generated by adding small amount of niobium in ultralow carbon steel. Coarse grains contribute less to the plastic deformation than small grain. As a result, the work hardening coefficient and uniform elongation dramatically decrease with the bimodal grain size distribution which is different from the previous studies on nanocrystalline and multiphase material.
doi_str_mv 10.1002/srin.202200335
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2771464643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2771464643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2475-97f17b21b469733e94967f3c1f92c0c76285a6d6fce491d4e5c34180e38608f33</originalsourceid><addsrcrecordid>eNqFUE1LAzEQDaJgqb16Dnjemq9NskeptRZqFdeCt2U3TWjKdlOTLaX1z5u6okdnBmaYee8NPACuMRpihMht8LYZEkQIQpSmZ6CHJc8Sytj7eZw5xgnlkl6CQQhrFINKyQXrgc-xMVq10BmYt760DZw5Vdb2WLbWNTBWu9LwSatV2dh4gC_ebbVvrQ7QeLeBc9fsGmuc38DJNz-3Rw3vbWi9rXadiIGLOorXbg9Hpa_iKm-1rq_AhSnroAc_vQ8WD-O30WMye55MR3ezRBEm0iQTBouK4IrxTFCqM5ZxYajCJiMKKcGJTEu-5EZpluEl06miDEukqeRIGkr74KbT3Xr3sdOhLdZu55v4siBCYMZjnlDDDqW8C8FrU2y93ZT-UGBUnDwuTh4Xvx5HQtYR9rbWh3_QRf46nf9xvwA5BID2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771464643</pqid></control><display><type>article</type><title>Effect of Strain Localization on the Mechanical Properties from Nonuniform Grain Size Distribution of Ultralow Carbon Steel</title><source>Wiley Online Library</source><creator>Kang, Chun Gu ; Yoon, Jeong Whan</creator><creatorcontrib>Kang, Chun Gu ; Yoon, Jeong Whan</creatorcontrib><description>The effect of the bimodal grain size distribution in the range of several tens of micrometers is studied to investigate the mechanical properties of metallic materials with single‐phase ferritic microstructure. The previous studies on the bimodal distribution of grain size have been performed on materials with nanocrystalline, ultrafine, or multiphase microstructures, and have generally reported that the mixed structure of fine and coarse grains improves the ductility of the material, because the coarser grains preferentially accommodate deformation. However, herein, the coarse grains do not accept the deformation well during plastic deformation and cause nonuniform deformation, which lowers the work hardening coefficient and accelerates necking of sheet. The influence of the bimodal grain size distribution on the mechanical properties is evaluated using tensile and various formability tests. Microstructural changes before and after deformation are tracked by electron backscatter diffraction. Herein, the bimodal distribution is artificially generated by adding small amount of niobium in ultralow carbon steel. Coarse grains contribute less to the plastic deformation than small grain. As a result, the work hardening coefficient and uniform elongation dramatically decrease with the bimodal grain size distribution which is different from the previous studies on nanocrystalline and multiphase material.</description><identifier>ISSN: 1611-3683</identifier><identifier>EISSN: 1869-344X</identifier><identifier>DOI: 10.1002/srin.202200335</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>abnormal grain growth ; bimodal distributions ; Electron backscatter diffraction ; Grain size distribution ; Low carbon steels ; Mechanical properties ; Micrometers ; Microstructure ; microstructures ; Necking ; Plastic deformation ; Strain localization ; Ultrafines ; Work hardening</subject><ispartof>Steel research international, 2023-02, Vol.94 (2), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2475-97f17b21b469733e94967f3c1f92c0c76285a6d6fce491d4e5c34180e38608f33</citedby><cites>FETCH-LOGICAL-c2475-97f17b21b469733e94967f3c1f92c0c76285a6d6fce491d4e5c34180e38608f33</cites><orcidid>0000-0002-7616-5253</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsrin.202200335$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsrin.202200335$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Kang, Chun Gu</creatorcontrib><creatorcontrib>Yoon, Jeong Whan</creatorcontrib><title>Effect of Strain Localization on the Mechanical Properties from Nonuniform Grain Size Distribution of Ultralow Carbon Steel</title><title>Steel research international</title><description>The effect of the bimodal grain size distribution in the range of several tens of micrometers is studied to investigate the mechanical properties of metallic materials with single‐phase ferritic microstructure. The previous studies on the bimodal distribution of grain size have been performed on materials with nanocrystalline, ultrafine, or multiphase microstructures, and have generally reported that the mixed structure of fine and coarse grains improves the ductility of the material, because the coarser grains preferentially accommodate deformation. However, herein, the coarse grains do not accept the deformation well during plastic deformation and cause nonuniform deformation, which lowers the work hardening coefficient and accelerates necking of sheet. The influence of the bimodal grain size distribution on the mechanical properties is evaluated using tensile and various formability tests. Microstructural changes before and after deformation are tracked by electron backscatter diffraction. Herein, the bimodal distribution is artificially generated by adding small amount of niobium in ultralow carbon steel. Coarse grains contribute less to the plastic deformation than small grain. As a result, the work hardening coefficient and uniform elongation dramatically decrease with the bimodal grain size distribution which is different from the previous studies on nanocrystalline and multiphase material.</description><subject>abnormal grain growth</subject><subject>bimodal distributions</subject><subject>Electron backscatter diffraction</subject><subject>Grain size distribution</subject><subject>Low carbon steels</subject><subject>Mechanical properties</subject><subject>Micrometers</subject><subject>Microstructure</subject><subject>microstructures</subject><subject>Necking</subject><subject>Plastic deformation</subject><subject>Strain localization</subject><subject>Ultrafines</subject><subject>Work hardening</subject><issn>1611-3683</issn><issn>1869-344X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LAzEQDaJgqb16Dnjemq9NskeptRZqFdeCt2U3TWjKdlOTLaX1z5u6okdnBmaYee8NPACuMRpihMht8LYZEkQIQpSmZ6CHJc8Sytj7eZw5xgnlkl6CQQhrFINKyQXrgc-xMVq10BmYt760DZw5Vdb2WLbWNTBWu9LwSatV2dh4gC_ebbVvrQ7QeLeBc9fsGmuc38DJNz-3Rw3vbWi9rXadiIGLOorXbg9Hpa_iKm-1rq_AhSnroAc_vQ8WD-O30WMye55MR3ezRBEm0iQTBouK4IrxTFCqM5ZxYajCJiMKKcGJTEu-5EZpluEl06miDEukqeRIGkr74KbT3Xr3sdOhLdZu55v4siBCYMZjnlDDDqW8C8FrU2y93ZT-UGBUnDwuTh4Xvx5HQtYR9rbWh3_QRf46nf9xvwA5BID2</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>Kang, Chun Gu</creator><creator>Yoon, Jeong Whan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-7616-5253</orcidid></search><sort><creationdate>202302</creationdate><title>Effect of Strain Localization on the Mechanical Properties from Nonuniform Grain Size Distribution of Ultralow Carbon Steel</title><author>Kang, Chun Gu ; Yoon, Jeong Whan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2475-97f17b21b469733e94967f3c1f92c0c76285a6d6fce491d4e5c34180e38608f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>abnormal grain growth</topic><topic>bimodal distributions</topic><topic>Electron backscatter diffraction</topic><topic>Grain size distribution</topic><topic>Low carbon steels</topic><topic>Mechanical properties</topic><topic>Micrometers</topic><topic>Microstructure</topic><topic>microstructures</topic><topic>Necking</topic><topic>Plastic deformation</topic><topic>Strain localization</topic><topic>Ultrafines</topic><topic>Work hardening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Chun Gu</creatorcontrib><creatorcontrib>Yoon, Jeong Whan</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Steel research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Chun Gu</au><au>Yoon, Jeong Whan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Strain Localization on the Mechanical Properties from Nonuniform Grain Size Distribution of Ultralow Carbon Steel</atitle><jtitle>Steel research international</jtitle><date>2023-02</date><risdate>2023</risdate><volume>94</volume><issue>2</issue><epage>n/a</epage><issn>1611-3683</issn><eissn>1869-344X</eissn><abstract>The effect of the bimodal grain size distribution in the range of several tens of micrometers is studied to investigate the mechanical properties of metallic materials with single‐phase ferritic microstructure. The previous studies on the bimodal distribution of grain size have been performed on materials with nanocrystalline, ultrafine, or multiphase microstructures, and have generally reported that the mixed structure of fine and coarse grains improves the ductility of the material, because the coarser grains preferentially accommodate deformation. However, herein, the coarse grains do not accept the deformation well during plastic deformation and cause nonuniform deformation, which lowers the work hardening coefficient and accelerates necking of sheet. The influence of the bimodal grain size distribution on the mechanical properties is evaluated using tensile and various formability tests. Microstructural changes before and after deformation are tracked by electron backscatter diffraction. Herein, the bimodal distribution is artificially generated by adding small amount of niobium in ultralow carbon steel. Coarse grains contribute less to the plastic deformation than small grain. As a result, the work hardening coefficient and uniform elongation dramatically decrease with the bimodal grain size distribution which is different from the previous studies on nanocrystalline and multiphase material.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/srin.202200335</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7616-5253</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1611-3683
ispartof Steel research international, 2023-02, Vol.94 (2), p.n/a
issn 1611-3683
1869-344X
language eng
recordid cdi_proquest_journals_2771464643
source Wiley Online Library
subjects abnormal grain growth
bimodal distributions
Electron backscatter diffraction
Grain size distribution
Low carbon steels
Mechanical properties
Micrometers
Microstructure
microstructures
Necking
Plastic deformation
Strain localization
Ultrafines
Work hardening
title Effect of Strain Localization on the Mechanical Properties from Nonuniform Grain Size Distribution of Ultralow Carbon Steel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A16%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Strain%20Localization%20on%20the%20Mechanical%20Properties%20from%20Nonuniform%20Grain%20Size%20Distribution%20of%20Ultralow%20Carbon%20Steel&rft.jtitle=Steel%20research%20international&rft.au=Kang,%20Chun%20Gu&rft.date=2023-02&rft.volume=94&rft.issue=2&rft.epage=n/a&rft.issn=1611-3683&rft.eissn=1869-344X&rft_id=info:doi/10.1002/srin.202200335&rft_dat=%3Cproquest_cross%3E2771464643%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2771464643&rft_id=info:pmid/&rfr_iscdi=true