Evaluation of Deformation and Fracture Behavior in 304L Austenitic Steel Harmonic Structures through Nanoindentation

Investigating the mechanical properties of harmonic structures during various stages of deformation, particularly after fracture, is critical. Herein, nanoindentation is used to evaluate the local deformation and fracture behavior of SUS304L steel harmonic structures. Electron backscattering diffrac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Steel research international 2023-02, Vol.94 (2), p.n/a
Hauptverfasser: Paul, Viola, Ameyama, Kei, Ota-Kawabata, Mie, Ohmura, Takahito
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page
container_title Steel research international
container_volume 94
creator Paul, Viola
Ameyama, Kei
Ota-Kawabata, Mie
Ohmura, Takahito
description Investigating the mechanical properties of harmonic structures during various stages of deformation, particularly after fracture, is critical. Herein, nanoindentation is used to evaluate the local deformation and fracture behavior of SUS304L steel harmonic structures. Electron backscattering diffraction is employed to observe the strain distribution in the fracture‐deformed samples, where high kernel average misorientation is evident near the shell–core boundary region. Comparison of the deformed sample reveals that the nanohardness of the shell and core regions significantly increases after deformation. This phenomenon indicates the capability of strain hardening. Furthermore, plastic inhomogeneity is observed before the fracture occurs. Strain‐induced α′‐martensite is observed in the fractured area, especially in the core region near the shell–core boundary, because of the high strain. High nanohardness is evident due to the high dislocation density and formation of strain‐induced α′‐martensite. The resulting high stress concentration can lead to void formation and crack initiation originating from the region near the shell–core boundary. Investigating the mechanical properties of harmonic structures during various stages of deformation, particularly after fracture, is critical. Herein, nanoindentation and electron backscattering diffraction are used to evaluate the local deformation and fracture behavior of SUS304L steel harmonic structures. The mechanical response at various deformation stages is evaluated in terms of microstructures and strain observations.
doi_str_mv 10.1002/srin.202200354
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2771464602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2771464602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3134-6b2284cc60243502944c70dfecd87550a476f057cbd5a752cbef21b491095a013</originalsourceid><addsrcrecordid>eNqFkM1LAzEQxYMoWGqvngOet-Zrk91jra0tlApWwduSzWZtSpvUJFvpf--2K3p0LjMP3u8NPABuMRpihMh98MYOCSIEIZqyC9DDGc8Tytj7ZXtzjBPKM3oNBiFsUDs0y7hgPRAnB7ltZDTOQlfDR107v-uktBWceqli4zV80Gt5MM5DYyFFbAFHTYjammgUXEWtt3Am_c7Zs_TNGQowrr1rPtZwKa0zttI2nqNvwFUtt0EPfnYfvE0nr-NZsnh-mo9Hi0RRTFnCS0IyphRHhNEUkZwxJVBVa1VlIk2RZILXKBWqrFIpUqJKXRNcshyjPJUI0z6463L33n02OsRi4xpv25cFEQIzztro1jXsXMq7ELyui703O-mPBUbFqdziVG7xW24L5B3wZbb6-I-7WL3Ml3_sNyFMfo4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771464602</pqid></control><display><type>article</type><title>Evaluation of Deformation and Fracture Behavior in 304L Austenitic Steel Harmonic Structures through Nanoindentation</title><source>Access via Wiley Online Library</source><creator>Paul, Viola ; Ameyama, Kei ; Ota-Kawabata, Mie ; Ohmura, Takahito</creator><creatorcontrib>Paul, Viola ; Ameyama, Kei ; Ota-Kawabata, Mie ; Ohmura, Takahito</creatorcontrib><description>Investigating the mechanical properties of harmonic structures during various stages of deformation, particularly after fracture, is critical. Herein, nanoindentation is used to evaluate the local deformation and fracture behavior of SUS304L steel harmonic structures. Electron backscattering diffraction is employed to observe the strain distribution in the fracture‐deformed samples, where high kernel average misorientation is evident near the shell–core boundary region. Comparison of the deformed sample reveals that the nanohardness of the shell and core regions significantly increases after deformation. This phenomenon indicates the capability of strain hardening. Furthermore, plastic inhomogeneity is observed before the fracture occurs. Strain‐induced α′‐martensite is observed in the fractured area, especially in the core region near the shell–core boundary, because of the high strain. High nanohardness is evident due to the high dislocation density and formation of strain‐induced α′‐martensite. The resulting high stress concentration can lead to void formation and crack initiation originating from the region near the shell–core boundary. Investigating the mechanical properties of harmonic structures during various stages of deformation, particularly after fracture, is critical. Herein, nanoindentation and electron backscattering diffraction are used to evaluate the local deformation and fracture behavior of SUS304L steel harmonic structures. The mechanical response at various deformation stages is evaluated in terms of microstructures and strain observations.</description><identifier>ISSN: 1611-3683</identifier><identifier>EISSN: 1869-344X</identifier><identifier>DOI: 10.1002/srin.202200354</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Austenitic stainless steels ; Crack initiation ; Deformation ; Dislocation density ; Electron backscatter diffraction ; fracture behaviors ; harmonic structures ; Inhomogeneity ; Martensite ; martensites ; Mechanical properties ; Misalignment ; Nanohardness ; Nanoindentation ; Strain distribution ; Strain hardening ; Stress concentration ; SUS304L steels</subject><ispartof>Steel research international, 2023-02, Vol.94 (2), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3134-6b2284cc60243502944c70dfecd87550a476f057cbd5a752cbef21b491095a013</citedby><cites>FETCH-LOGICAL-c3134-6b2284cc60243502944c70dfecd87550a476f057cbd5a752cbef21b491095a013</cites><orcidid>0000-0001-7528-566X ; 0000-0003-4626-2009 ; 0000-0002-4479-854X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsrin.202200354$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsrin.202200354$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Paul, Viola</creatorcontrib><creatorcontrib>Ameyama, Kei</creatorcontrib><creatorcontrib>Ota-Kawabata, Mie</creatorcontrib><creatorcontrib>Ohmura, Takahito</creatorcontrib><title>Evaluation of Deformation and Fracture Behavior in 304L Austenitic Steel Harmonic Structures through Nanoindentation</title><title>Steel research international</title><description>Investigating the mechanical properties of harmonic structures during various stages of deformation, particularly after fracture, is critical. Herein, nanoindentation is used to evaluate the local deformation and fracture behavior of SUS304L steel harmonic structures. Electron backscattering diffraction is employed to observe the strain distribution in the fracture‐deformed samples, where high kernel average misorientation is evident near the shell–core boundary region. Comparison of the deformed sample reveals that the nanohardness of the shell and core regions significantly increases after deformation. This phenomenon indicates the capability of strain hardening. Furthermore, plastic inhomogeneity is observed before the fracture occurs. Strain‐induced α′‐martensite is observed in the fractured area, especially in the core region near the shell–core boundary, because of the high strain. High nanohardness is evident due to the high dislocation density and formation of strain‐induced α′‐martensite. The resulting high stress concentration can lead to void formation and crack initiation originating from the region near the shell–core boundary. Investigating the mechanical properties of harmonic structures during various stages of deformation, particularly after fracture, is critical. Herein, nanoindentation and electron backscattering diffraction are used to evaluate the local deformation and fracture behavior of SUS304L steel harmonic structures. The mechanical response at various deformation stages is evaluated in terms of microstructures and strain observations.</description><subject>Austenitic stainless steels</subject><subject>Crack initiation</subject><subject>Deformation</subject><subject>Dislocation density</subject><subject>Electron backscatter diffraction</subject><subject>fracture behaviors</subject><subject>harmonic structures</subject><subject>Inhomogeneity</subject><subject>Martensite</subject><subject>martensites</subject><subject>Mechanical properties</subject><subject>Misalignment</subject><subject>Nanohardness</subject><subject>Nanoindentation</subject><subject>Strain distribution</subject><subject>Strain hardening</subject><subject>Stress concentration</subject><subject>SUS304L steels</subject><issn>1611-3683</issn><issn>1869-344X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LAzEQxYMoWGqvngOet-Zrk91jra0tlApWwduSzWZtSpvUJFvpf--2K3p0LjMP3u8NPABuMRpihMh98MYOCSIEIZqyC9DDGc8Tytj7ZXtzjBPKM3oNBiFsUDs0y7hgPRAnB7ltZDTOQlfDR107v-uktBWceqli4zV80Gt5MM5DYyFFbAFHTYjammgUXEWtt3Am_c7Zs_TNGQowrr1rPtZwKa0zttI2nqNvwFUtt0EPfnYfvE0nr-NZsnh-mo9Hi0RRTFnCS0IyphRHhNEUkZwxJVBVa1VlIk2RZILXKBWqrFIpUqJKXRNcshyjPJUI0z6463L33n02OsRi4xpv25cFEQIzztro1jXsXMq7ELyui703O-mPBUbFqdziVG7xW24L5B3wZbb6-I-7WL3Ml3_sNyFMfo4</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>Paul, Viola</creator><creator>Ameyama, Kei</creator><creator>Ota-Kawabata, Mie</creator><creator>Ohmura, Takahito</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-7528-566X</orcidid><orcidid>https://orcid.org/0000-0003-4626-2009</orcidid><orcidid>https://orcid.org/0000-0002-4479-854X</orcidid></search><sort><creationdate>202302</creationdate><title>Evaluation of Deformation and Fracture Behavior in 304L Austenitic Steel Harmonic Structures through Nanoindentation</title><author>Paul, Viola ; Ameyama, Kei ; Ota-Kawabata, Mie ; Ohmura, Takahito</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3134-6b2284cc60243502944c70dfecd87550a476f057cbd5a752cbef21b491095a013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Austenitic stainless steels</topic><topic>Crack initiation</topic><topic>Deformation</topic><topic>Dislocation density</topic><topic>Electron backscatter diffraction</topic><topic>fracture behaviors</topic><topic>harmonic structures</topic><topic>Inhomogeneity</topic><topic>Martensite</topic><topic>martensites</topic><topic>Mechanical properties</topic><topic>Misalignment</topic><topic>Nanohardness</topic><topic>Nanoindentation</topic><topic>Strain distribution</topic><topic>Strain hardening</topic><topic>Stress concentration</topic><topic>SUS304L steels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paul, Viola</creatorcontrib><creatorcontrib>Ameyama, Kei</creatorcontrib><creatorcontrib>Ota-Kawabata, Mie</creatorcontrib><creatorcontrib>Ohmura, Takahito</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Steel research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paul, Viola</au><au>Ameyama, Kei</au><au>Ota-Kawabata, Mie</au><au>Ohmura, Takahito</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of Deformation and Fracture Behavior in 304L Austenitic Steel Harmonic Structures through Nanoindentation</atitle><jtitle>Steel research international</jtitle><date>2023-02</date><risdate>2023</risdate><volume>94</volume><issue>2</issue><epage>n/a</epage><issn>1611-3683</issn><eissn>1869-344X</eissn><abstract>Investigating the mechanical properties of harmonic structures during various stages of deformation, particularly after fracture, is critical. Herein, nanoindentation is used to evaluate the local deformation and fracture behavior of SUS304L steel harmonic structures. Electron backscattering diffraction is employed to observe the strain distribution in the fracture‐deformed samples, where high kernel average misorientation is evident near the shell–core boundary region. Comparison of the deformed sample reveals that the nanohardness of the shell and core regions significantly increases after deformation. This phenomenon indicates the capability of strain hardening. Furthermore, plastic inhomogeneity is observed before the fracture occurs. Strain‐induced α′‐martensite is observed in the fractured area, especially in the core region near the shell–core boundary, because of the high strain. High nanohardness is evident due to the high dislocation density and formation of strain‐induced α′‐martensite. The resulting high stress concentration can lead to void formation and crack initiation originating from the region near the shell–core boundary. Investigating the mechanical properties of harmonic structures during various stages of deformation, particularly after fracture, is critical. Herein, nanoindentation and electron backscattering diffraction are used to evaluate the local deformation and fracture behavior of SUS304L steel harmonic structures. The mechanical response at various deformation stages is evaluated in terms of microstructures and strain observations.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/srin.202200354</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7528-566X</orcidid><orcidid>https://orcid.org/0000-0003-4626-2009</orcidid><orcidid>https://orcid.org/0000-0002-4479-854X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1611-3683
ispartof Steel research international, 2023-02, Vol.94 (2), p.n/a
issn 1611-3683
1869-344X
language eng
recordid cdi_proquest_journals_2771464602
source Access via Wiley Online Library
subjects Austenitic stainless steels
Crack initiation
Deformation
Dislocation density
Electron backscatter diffraction
fracture behaviors
harmonic structures
Inhomogeneity
Martensite
martensites
Mechanical properties
Misalignment
Nanohardness
Nanoindentation
Strain distribution
Strain hardening
Stress concentration
SUS304L steels
title Evaluation of Deformation and Fracture Behavior in 304L Austenitic Steel Harmonic Structures through Nanoindentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A59%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20Deformation%20and%20Fracture%20Behavior%20in%20304L%20Austenitic%20Steel%20Harmonic%20Structures%20through%20Nanoindentation&rft.jtitle=Steel%20research%20international&rft.au=Paul,%20Viola&rft.date=2023-02&rft.volume=94&rft.issue=2&rft.epage=n/a&rft.issn=1611-3683&rft.eissn=1869-344X&rft_id=info:doi/10.1002/srin.202200354&rft_dat=%3Cproquest_cross%3E2771464602%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2771464602&rft_id=info:pmid/&rfr_iscdi=true