Evaluation of Deformation and Fracture Behavior in 304L Austenitic Steel Harmonic Structures through Nanoindentation
Investigating the mechanical properties of harmonic structures during various stages of deformation, particularly after fracture, is critical. Herein, nanoindentation is used to evaluate the local deformation and fracture behavior of SUS304L steel harmonic structures. Electron backscattering diffrac...
Gespeichert in:
Veröffentlicht in: | Steel research international 2023-02, Vol.94 (2), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Steel research international |
container_volume | 94 |
creator | Paul, Viola Ameyama, Kei Ota-Kawabata, Mie Ohmura, Takahito |
description | Investigating the mechanical properties of harmonic structures during various stages of deformation, particularly after fracture, is critical. Herein, nanoindentation is used to evaluate the local deformation and fracture behavior of SUS304L steel harmonic structures. Electron backscattering diffraction is employed to observe the strain distribution in the fracture‐deformed samples, where high kernel average misorientation is evident near the shell–core boundary region. Comparison of the deformed sample reveals that the nanohardness of the shell and core regions significantly increases after deformation. This phenomenon indicates the capability of strain hardening. Furthermore, plastic inhomogeneity is observed before the fracture occurs. Strain‐induced α′‐martensite is observed in the fractured area, especially in the core region near the shell–core boundary, because of the high strain. High nanohardness is evident due to the high dislocation density and formation of strain‐induced α′‐martensite. The resulting high stress concentration can lead to void formation and crack initiation originating from the region near the shell–core boundary.
Investigating the mechanical properties of harmonic structures during various stages of deformation, particularly after fracture, is critical. Herein, nanoindentation and electron backscattering diffraction are used to evaluate the local deformation and fracture behavior of SUS304L steel harmonic structures. The mechanical response at various deformation stages is evaluated in terms of microstructures and strain observations. |
doi_str_mv | 10.1002/srin.202200354 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2771464602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2771464602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3134-6b2284cc60243502944c70dfecd87550a476f057cbd5a752cbef21b491095a013</originalsourceid><addsrcrecordid>eNqFkM1LAzEQxYMoWGqvngOet-Zrk91jra0tlApWwduSzWZtSpvUJFvpf--2K3p0LjMP3u8NPABuMRpihMh98MYOCSIEIZqyC9DDGc8Tytj7ZXtzjBPKM3oNBiFsUDs0y7hgPRAnB7ltZDTOQlfDR107v-uktBWceqli4zV80Gt5MM5DYyFFbAFHTYjammgUXEWtt3Am_c7Zs_TNGQowrr1rPtZwKa0zttI2nqNvwFUtt0EPfnYfvE0nr-NZsnh-mo9Hi0RRTFnCS0IyphRHhNEUkZwxJVBVa1VlIk2RZILXKBWqrFIpUqJKXRNcshyjPJUI0z6463L33n02OsRi4xpv25cFEQIzztro1jXsXMq7ELyui703O-mPBUbFqdziVG7xW24L5B3wZbb6-I-7WL3Ml3_sNyFMfo4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771464602</pqid></control><display><type>article</type><title>Evaluation of Deformation and Fracture Behavior in 304L Austenitic Steel Harmonic Structures through Nanoindentation</title><source>Access via Wiley Online Library</source><creator>Paul, Viola ; Ameyama, Kei ; Ota-Kawabata, Mie ; Ohmura, Takahito</creator><creatorcontrib>Paul, Viola ; Ameyama, Kei ; Ota-Kawabata, Mie ; Ohmura, Takahito</creatorcontrib><description>Investigating the mechanical properties of harmonic structures during various stages of deformation, particularly after fracture, is critical. Herein, nanoindentation is used to evaluate the local deformation and fracture behavior of SUS304L steel harmonic structures. Electron backscattering diffraction is employed to observe the strain distribution in the fracture‐deformed samples, where high kernel average misorientation is evident near the shell–core boundary region. Comparison of the deformed sample reveals that the nanohardness of the shell and core regions significantly increases after deformation. This phenomenon indicates the capability of strain hardening. Furthermore, plastic inhomogeneity is observed before the fracture occurs. Strain‐induced α′‐martensite is observed in the fractured area, especially in the core region near the shell–core boundary, because of the high strain. High nanohardness is evident due to the high dislocation density and formation of strain‐induced α′‐martensite. The resulting high stress concentration can lead to void formation and crack initiation originating from the region near the shell–core boundary.
Investigating the mechanical properties of harmonic structures during various stages of deformation, particularly after fracture, is critical. Herein, nanoindentation and electron backscattering diffraction are used to evaluate the local deformation and fracture behavior of SUS304L steel harmonic structures. The mechanical response at various deformation stages is evaluated in terms of microstructures and strain observations.</description><identifier>ISSN: 1611-3683</identifier><identifier>EISSN: 1869-344X</identifier><identifier>DOI: 10.1002/srin.202200354</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Austenitic stainless steels ; Crack initiation ; Deformation ; Dislocation density ; Electron backscatter diffraction ; fracture behaviors ; harmonic structures ; Inhomogeneity ; Martensite ; martensites ; Mechanical properties ; Misalignment ; Nanohardness ; Nanoindentation ; Strain distribution ; Strain hardening ; Stress concentration ; SUS304L steels</subject><ispartof>Steel research international, 2023-02, Vol.94 (2), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3134-6b2284cc60243502944c70dfecd87550a476f057cbd5a752cbef21b491095a013</citedby><cites>FETCH-LOGICAL-c3134-6b2284cc60243502944c70dfecd87550a476f057cbd5a752cbef21b491095a013</cites><orcidid>0000-0001-7528-566X ; 0000-0003-4626-2009 ; 0000-0002-4479-854X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsrin.202200354$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsrin.202200354$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Paul, Viola</creatorcontrib><creatorcontrib>Ameyama, Kei</creatorcontrib><creatorcontrib>Ota-Kawabata, Mie</creatorcontrib><creatorcontrib>Ohmura, Takahito</creatorcontrib><title>Evaluation of Deformation and Fracture Behavior in 304L Austenitic Steel Harmonic Structures through Nanoindentation</title><title>Steel research international</title><description>Investigating the mechanical properties of harmonic structures during various stages of deformation, particularly after fracture, is critical. Herein, nanoindentation is used to evaluate the local deformation and fracture behavior of SUS304L steel harmonic structures. Electron backscattering diffraction is employed to observe the strain distribution in the fracture‐deformed samples, where high kernel average misorientation is evident near the shell–core boundary region. Comparison of the deformed sample reveals that the nanohardness of the shell and core regions significantly increases after deformation. This phenomenon indicates the capability of strain hardening. Furthermore, plastic inhomogeneity is observed before the fracture occurs. Strain‐induced α′‐martensite is observed in the fractured area, especially in the core region near the shell–core boundary, because of the high strain. High nanohardness is evident due to the high dislocation density and formation of strain‐induced α′‐martensite. The resulting high stress concentration can lead to void formation and crack initiation originating from the region near the shell–core boundary.
Investigating the mechanical properties of harmonic structures during various stages of deformation, particularly after fracture, is critical. Herein, nanoindentation and electron backscattering diffraction are used to evaluate the local deformation and fracture behavior of SUS304L steel harmonic structures. The mechanical response at various deformation stages is evaluated in terms of microstructures and strain observations.</description><subject>Austenitic stainless steels</subject><subject>Crack initiation</subject><subject>Deformation</subject><subject>Dislocation density</subject><subject>Electron backscatter diffraction</subject><subject>fracture behaviors</subject><subject>harmonic structures</subject><subject>Inhomogeneity</subject><subject>Martensite</subject><subject>martensites</subject><subject>Mechanical properties</subject><subject>Misalignment</subject><subject>Nanohardness</subject><subject>Nanoindentation</subject><subject>Strain distribution</subject><subject>Strain hardening</subject><subject>Stress concentration</subject><subject>SUS304L steels</subject><issn>1611-3683</issn><issn>1869-344X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LAzEQxYMoWGqvngOet-Zrk91jra0tlApWwduSzWZtSpvUJFvpf--2K3p0LjMP3u8NPABuMRpihMh98MYOCSIEIZqyC9DDGc8Tytj7ZXtzjBPKM3oNBiFsUDs0y7hgPRAnB7ltZDTOQlfDR107v-uktBWceqli4zV80Gt5MM5DYyFFbAFHTYjammgUXEWtt3Am_c7Zs_TNGQowrr1rPtZwKa0zttI2nqNvwFUtt0EPfnYfvE0nr-NZsnh-mo9Hi0RRTFnCS0IyphRHhNEUkZwxJVBVa1VlIk2RZILXKBWqrFIpUqJKXRNcshyjPJUI0z6463L33n02OsRi4xpv25cFEQIzztro1jXsXMq7ELyui703O-mPBUbFqdziVG7xW24L5B3wZbb6-I-7WL3Ml3_sNyFMfo4</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>Paul, Viola</creator><creator>Ameyama, Kei</creator><creator>Ota-Kawabata, Mie</creator><creator>Ohmura, Takahito</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-7528-566X</orcidid><orcidid>https://orcid.org/0000-0003-4626-2009</orcidid><orcidid>https://orcid.org/0000-0002-4479-854X</orcidid></search><sort><creationdate>202302</creationdate><title>Evaluation of Deformation and Fracture Behavior in 304L Austenitic Steel Harmonic Structures through Nanoindentation</title><author>Paul, Viola ; Ameyama, Kei ; Ota-Kawabata, Mie ; Ohmura, Takahito</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3134-6b2284cc60243502944c70dfecd87550a476f057cbd5a752cbef21b491095a013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Austenitic stainless steels</topic><topic>Crack initiation</topic><topic>Deformation</topic><topic>Dislocation density</topic><topic>Electron backscatter diffraction</topic><topic>fracture behaviors</topic><topic>harmonic structures</topic><topic>Inhomogeneity</topic><topic>Martensite</topic><topic>martensites</topic><topic>Mechanical properties</topic><topic>Misalignment</topic><topic>Nanohardness</topic><topic>Nanoindentation</topic><topic>Strain distribution</topic><topic>Strain hardening</topic><topic>Stress concentration</topic><topic>SUS304L steels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paul, Viola</creatorcontrib><creatorcontrib>Ameyama, Kei</creatorcontrib><creatorcontrib>Ota-Kawabata, Mie</creatorcontrib><creatorcontrib>Ohmura, Takahito</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Steel research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paul, Viola</au><au>Ameyama, Kei</au><au>Ota-Kawabata, Mie</au><au>Ohmura, Takahito</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of Deformation and Fracture Behavior in 304L Austenitic Steel Harmonic Structures through Nanoindentation</atitle><jtitle>Steel research international</jtitle><date>2023-02</date><risdate>2023</risdate><volume>94</volume><issue>2</issue><epage>n/a</epage><issn>1611-3683</issn><eissn>1869-344X</eissn><abstract>Investigating the mechanical properties of harmonic structures during various stages of deformation, particularly after fracture, is critical. Herein, nanoindentation is used to evaluate the local deformation and fracture behavior of SUS304L steel harmonic structures. Electron backscattering diffraction is employed to observe the strain distribution in the fracture‐deformed samples, where high kernel average misorientation is evident near the shell–core boundary region. Comparison of the deformed sample reveals that the nanohardness of the shell and core regions significantly increases after deformation. This phenomenon indicates the capability of strain hardening. Furthermore, plastic inhomogeneity is observed before the fracture occurs. Strain‐induced α′‐martensite is observed in the fractured area, especially in the core region near the shell–core boundary, because of the high strain. High nanohardness is evident due to the high dislocation density and formation of strain‐induced α′‐martensite. The resulting high stress concentration can lead to void formation and crack initiation originating from the region near the shell–core boundary.
Investigating the mechanical properties of harmonic structures during various stages of deformation, particularly after fracture, is critical. Herein, nanoindentation and electron backscattering diffraction are used to evaluate the local deformation and fracture behavior of SUS304L steel harmonic structures. The mechanical response at various deformation stages is evaluated in terms of microstructures and strain observations.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/srin.202200354</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7528-566X</orcidid><orcidid>https://orcid.org/0000-0003-4626-2009</orcidid><orcidid>https://orcid.org/0000-0002-4479-854X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1611-3683 |
ispartof | Steel research international, 2023-02, Vol.94 (2), p.n/a |
issn | 1611-3683 1869-344X |
language | eng |
recordid | cdi_proquest_journals_2771464602 |
source | Access via Wiley Online Library |
subjects | Austenitic stainless steels Crack initiation Deformation Dislocation density Electron backscatter diffraction fracture behaviors harmonic structures Inhomogeneity Martensite martensites Mechanical properties Misalignment Nanohardness Nanoindentation Strain distribution Strain hardening Stress concentration SUS304L steels |
title | Evaluation of Deformation and Fracture Behavior in 304L Austenitic Steel Harmonic Structures through Nanoindentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A59%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20Deformation%20and%20Fracture%20Behavior%20in%20304L%20Austenitic%20Steel%20Harmonic%20Structures%20through%20Nanoindentation&rft.jtitle=Steel%20research%20international&rft.au=Paul,%20Viola&rft.date=2023-02&rft.volume=94&rft.issue=2&rft.epage=n/a&rft.issn=1611-3683&rft.eissn=1869-344X&rft_id=info:doi/10.1002/srin.202200354&rft_dat=%3Cproquest_cross%3E2771464602%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2771464602&rft_id=info:pmid/&rfr_iscdi=true |