On graceful antimagic graphs
A graceful labeling of a graph G is an injective function from the vertex set of G to the set { 0 , 1 , ⋯ , | E ( G ) | } such that the induced edge labels are all different, where an induced edge label is defined as the absolute value of the difference between the labels of its end vertices. If the...
Gespeichert in:
Veröffentlicht in: | Aequationes mathematicae 2023-02, Vol.97 (1), p.13-30 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 30 |
---|---|
container_issue | 1 |
container_start_page | 13 |
container_title | Aequationes mathematicae |
container_volume | 97 |
creator | Ahmed, Mohammed Ali Semaničová-Feňovčíková, Andrea Bača, Martin Babujee, J. Baskar Shobana, Loganathan |
description | A graceful labeling of a graph
G
is an injective function from the vertex set of
G
to the set
{
0
,
1
,
⋯
,
|
E
(
G
)
|
}
such that the induced edge labels are all different, where an induced edge label is defined as the absolute value of the difference between the labels of its end vertices. If the induced edge labeling is simultaneously antimagic, i.e., the sums of labels of all edges incident to a given vertex are pairwise distinct for different vertices, we say that the graceful labeling is graceful antimagic. In this paper we deal with the problem of finding some classes of graceful antimagic graphs. |
doi_str_mv | 10.1007/s00010-022-00930-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2771367104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2771367104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-c9a0a7094cce30d94931973f2209806805fd1bcd5fcd372ad35f08ed65e37a1d3</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMoWFf_AfGw4Dn6krRNc5TFL1jYi55DzEfdZW1r0h78781awZunYWbem3n8CLlkuGGAvE0AGCg4p4ASoOyIFKzkoI2COCbFYU8VqvKUnKW0yx2XUhTkatMt22isD9N-abpx-2HarT2Mhvd0Tk6C2Sd_8VsX5PXh_mX1RNebx-fV3ZpaDozUKgMjoUprvYBTpRJMSRE4h2pQN6iCY2_WVcE6IblxogpovKsrL6RhTizI9Xx3iP3n5NOod_0Uu_xS55RM1JKhzCo-q2zsU4o-6CHmuPFLM-gDBT1T0JmC_qGgWTaJ2ZSyuGt9_Dv9j-sbAs5c4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771367104</pqid></control><display><type>article</type><title>On graceful antimagic graphs</title><source>SpringerNature Journals</source><creator>Ahmed, Mohammed Ali ; Semaničová-Feňovčíková, Andrea ; Bača, Martin ; Babujee, J. Baskar ; Shobana, Loganathan</creator><creatorcontrib>Ahmed, Mohammed Ali ; Semaničová-Feňovčíková, Andrea ; Bača, Martin ; Babujee, J. Baskar ; Shobana, Loganathan</creatorcontrib><description>A graceful labeling of a graph
G
is an injective function from the vertex set of
G
to the set
{
0
,
1
,
⋯
,
|
E
(
G
)
|
}
such that the induced edge labels are all different, where an induced edge label is defined as the absolute value of the difference between the labels of its end vertices. If the induced edge labeling is simultaneously antimagic, i.e., the sums of labels of all edges incident to a given vertex are pairwise distinct for different vertices, we say that the graceful labeling is graceful antimagic. In this paper we deal with the problem of finding some classes of graceful antimagic graphs.</description><identifier>ISSN: 0001-9054</identifier><identifier>EISSN: 1420-8903</identifier><identifier>DOI: 10.1007/s00010-022-00930-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Apexes ; Combinatorics ; Graph theory ; Graphs ; Labeling ; Labels ; Mathematics ; Mathematics and Statistics ; Vertex sets</subject><ispartof>Aequationes mathematicae, 2023-02, Vol.97 (1), p.13-30</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-c9a0a7094cce30d94931973f2209806805fd1bcd5fcd372ad35f08ed65e37a1d3</cites><orcidid>0000-0002-8432-9836</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00010-022-00930-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00010-022-00930-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ahmed, Mohammed Ali</creatorcontrib><creatorcontrib>Semaničová-Feňovčíková, Andrea</creatorcontrib><creatorcontrib>Bača, Martin</creatorcontrib><creatorcontrib>Babujee, J. Baskar</creatorcontrib><creatorcontrib>Shobana, Loganathan</creatorcontrib><title>On graceful antimagic graphs</title><title>Aequationes mathematicae</title><addtitle>Aequat. Math</addtitle><description>A graceful labeling of a graph
G
is an injective function from the vertex set of
G
to the set
{
0
,
1
,
⋯
,
|
E
(
G
)
|
}
such that the induced edge labels are all different, where an induced edge label is defined as the absolute value of the difference between the labels of its end vertices. If the induced edge labeling is simultaneously antimagic, i.e., the sums of labels of all edges incident to a given vertex are pairwise distinct for different vertices, we say that the graceful labeling is graceful antimagic. In this paper we deal with the problem of finding some classes of graceful antimagic graphs.</description><subject>Analysis</subject><subject>Apexes</subject><subject>Combinatorics</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Labeling</subject><subject>Labels</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Vertex sets</subject><issn>0001-9054</issn><issn>1420-8903</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMoWFf_AfGw4Dn6krRNc5TFL1jYi55DzEfdZW1r0h78781awZunYWbem3n8CLlkuGGAvE0AGCg4p4ASoOyIFKzkoI2COCbFYU8VqvKUnKW0yx2XUhTkatMt22isD9N-abpx-2HarT2Mhvd0Tk6C2Sd_8VsX5PXh_mX1RNebx-fV3ZpaDozUKgMjoUprvYBTpRJMSRE4h2pQN6iCY2_WVcE6IblxogpovKsrL6RhTizI9Xx3iP3n5NOod_0Uu_xS55RM1JKhzCo-q2zsU4o-6CHmuPFLM-gDBT1T0JmC_qGgWTaJ2ZSyuGt9_Dv9j-sbAs5c4w</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Ahmed, Mohammed Ali</creator><creator>Semaničová-Feňovčíková, Andrea</creator><creator>Bača, Martin</creator><creator>Babujee, J. Baskar</creator><creator>Shobana, Loganathan</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8432-9836</orcidid></search><sort><creationdate>20230201</creationdate><title>On graceful antimagic graphs</title><author>Ahmed, Mohammed Ali ; Semaničová-Feňovčíková, Andrea ; Bača, Martin ; Babujee, J. Baskar ; Shobana, Loganathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-c9a0a7094cce30d94931973f2209806805fd1bcd5fcd372ad35f08ed65e37a1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Apexes</topic><topic>Combinatorics</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Labeling</topic><topic>Labels</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Vertex sets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, Mohammed Ali</creatorcontrib><creatorcontrib>Semaničová-Feňovčíková, Andrea</creatorcontrib><creatorcontrib>Bača, Martin</creatorcontrib><creatorcontrib>Babujee, J. Baskar</creatorcontrib><creatorcontrib>Shobana, Loganathan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Aequationes mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmed, Mohammed Ali</au><au>Semaničová-Feňovčíková, Andrea</au><au>Bača, Martin</au><au>Babujee, J. Baskar</au><au>Shobana, Loganathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On graceful antimagic graphs</atitle><jtitle>Aequationes mathematicae</jtitle><stitle>Aequat. Math</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>97</volume><issue>1</issue><spage>13</spage><epage>30</epage><pages>13-30</pages><issn>0001-9054</issn><eissn>1420-8903</eissn><abstract>A graceful labeling of a graph
G
is an injective function from the vertex set of
G
to the set
{
0
,
1
,
⋯
,
|
E
(
G
)
|
}
such that the induced edge labels are all different, where an induced edge label is defined as the absolute value of the difference between the labels of its end vertices. If the induced edge labeling is simultaneously antimagic, i.e., the sums of labels of all edges incident to a given vertex are pairwise distinct for different vertices, we say that the graceful labeling is graceful antimagic. In this paper we deal with the problem of finding some classes of graceful antimagic graphs.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00010-022-00930-1</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-8432-9836</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-9054 |
ispartof | Aequationes mathematicae, 2023-02, Vol.97 (1), p.13-30 |
issn | 0001-9054 1420-8903 |
language | eng |
recordid | cdi_proquest_journals_2771367104 |
source | SpringerNature Journals |
subjects | Analysis Apexes Combinatorics Graph theory Graphs Labeling Labels Mathematics Mathematics and Statistics Vertex sets |
title | On graceful antimagic graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T14%3A15%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20graceful%20antimagic%20graphs&rft.jtitle=Aequationes%20mathematicae&rft.au=Ahmed,%20Mohammed%20Ali&rft.date=2023-02-01&rft.volume=97&rft.issue=1&rft.spage=13&rft.epage=30&rft.pages=13-30&rft.issn=0001-9054&rft.eissn=1420-8903&rft_id=info:doi/10.1007/s00010-022-00930-1&rft_dat=%3Cproquest_cross%3E2771367104%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2771367104&rft_id=info:pmid/&rfr_iscdi=true |