The insulated conductivity problem, effective gradient estimates and the maximum principle

We consider the insulated conductivity problem with two unit balls as insulating inclusions, a distance of order ε apart. The solution u represents the electric potential. In dimensions n ≥ 3 it is an open problem to find the optimal bound on the gradient of u , the electric field, in the narrow reg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2023-02, Vol.385 (1-2), p.1-16
1. Verfasser: Weinkove, Ben
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the insulated conductivity problem with two unit balls as insulating inclusions, a distance of order ε apart. The solution u represents the electric potential. In dimensions n ≥ 3 it is an open problem to find the optimal bound on the gradient of u , the electric field, in the narrow region between the insulating bodies. Li-Yang recently proved a bound of order ε - ( 1 - γ ) / 2 for some γ > 0 . In this paper we use a direct maximum principle argument to sharpen the Li-Yang estimate for n ≥ 4 . Our method gives effective lower bounds on γ , which in particular approach 1 as n tends to infinity.
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-021-02314-3