Deep Learning Meets Deep Democracy: Deliberative Governance and Responsible Innovation in Artificial Intelligence

Responsible innovation in artificial intelligence (AI) calls for public deliberation: well-informed “deep democratic” debate that involves actors from the public, private, and civil society sectors in joint efforts to critically address the goals and means of AI. Adopting such an approach constitute...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Business ethics quarterly 2023-01, Vol.33 (1), p.146-179
Hauptverfasser: Buhmann, Alexander, Fieseler, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 179
container_issue 1
container_start_page 146
container_title Business ethics quarterly
container_volume 33
creator Buhmann, Alexander
Fieseler, Christian
description Responsible innovation in artificial intelligence (AI) calls for public deliberation: well-informed “deep democratic” debate that involves actors from the public, private, and civil society sectors in joint efforts to critically address the goals and means of AI. Adopting such an approach constitutes a challenge, however, due to the opacity of AI and strong knowledge boundaries between experts and citizens. This undermines trust in AI and undercuts key conditions for deliberation. We approach this challenge as a problem of situating the knowledge of actors from the AI industry within a deliberative system. We develop a new framework of responsibilities for AI innovation as well as a deliberative governance approach for enacting these responsibilities. In elucidating this approach, we show how actors from the AI industry can most effectively engage with experts and nonexperts in different social venues to facilitate well-informed judgments on opaque AI systems and thus effectuate their democratic governance.
doi_str_mv 10.1017/beq.2021.42
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2771270942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_beq_2021_42</cupid><sourcerecordid>2771270942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-6daccd023d517579924ed143637487f5c96fce2b5ae1622fc73815a5aaebb2263</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWD9O_oGAR9mamWw2XW9SP6EiiIK3JZudLSnbpE22Bf-9Wyt48TTDzDPvO7yMXYAYgwB9XdN6jAJhnOMBGyEomUmJxSEbgVCYgRKfx-wkpYUQAOVEjtj6jmjFZ2Sid37OX4j6xH9md7QMNhr7dTO0naspmt5tiT-GLUVvvCVufMPfKK2CT67uiD97H7YDFTx3nt_G3rXOOtMNi566zs1puDpjR63pEp3_1lP28XD_Pn3KZq-Pz9PbWWZzLPqsaIy1jUDZKNBKlyXm1EAuC6nziW6VLYvWEtbKEBSIrdVyAsooY6iuEQt5yi73uqsY1htKfbUIm-HxLlWoNaAWZY4DdbWnbAwpRWqrVXRLE78qENUu02rItNplWv3QfE-TDd6lP3aSA2CZFzAg2a-gWdbRNXP68_1P8hs9QYPT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771270942</pqid></control><display><type>article</type><title>Deep Learning Meets Deep Democracy: Deliberative Governance and Responsible Innovation in Artificial Intelligence</title><source>Business Source Complete</source><source>Cambridge University Press Journals Complete</source><creator>Buhmann, Alexander ; Fieseler, Christian</creator><creatorcontrib>Buhmann, Alexander ; Fieseler, Christian</creatorcontrib><description>Responsible innovation in artificial intelligence (AI) calls for public deliberation: well-informed “deep democratic” debate that involves actors from the public, private, and civil society sectors in joint efforts to critically address the goals and means of AI. Adopting such an approach constitutes a challenge, however, due to the opacity of AI and strong knowledge boundaries between experts and citizens. This undermines trust in AI and undercuts key conditions for deliberation. We approach this challenge as a problem of situating the knowledge of actors from the AI industry within a deliberative system. We develop a new framework of responsibilities for AI innovation as well as a deliberative governance approach for enacting these responsibilities. In elucidating this approach, we show how actors from the AI industry can most effectively engage with experts and nonexperts in different social venues to facilitate well-informed judgments on opaque AI systems and thus effectuate their democratic governance.</description><identifier>ISSN: 1052-150X</identifier><identifier>EISSN: 2153-3326</identifier><identifier>DOI: 10.1017/beq.2021.42</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Algorithms ; Artificial intelligence ; Civil society ; Collaboration ; Corporate governance ; Decision making ; Deep learning ; Democracy ; Design specifications ; Epistemology ; Ethics ; Experts ; Governance ; Innovations ; Learning ; Social responsibility</subject><ispartof>Business ethics quarterly, 2023-01, Vol.33 (1), p.146-179</ispartof><rights>The Author(s), 2022. Published by Cambridge University Press on behalf of the Society for Business Ethics</rights><rights>The Author(s), 2022. Published by Cambridge University Press on behalf of the Society for Business Ethics. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-6daccd023d517579924ed143637487f5c96fce2b5ae1622fc73815a5aaebb2263</citedby><cites>FETCH-LOGICAL-c426t-6daccd023d517579924ed143637487f5c96fce2b5ae1622fc73815a5aaebb2263</cites><orcidid>0000-0002-2466-3867 ; 0000-0001-8077-496X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1052150X21000427/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,314,777,781,27905,27906,55609</link.rule.ids></links><search><creatorcontrib>Buhmann, Alexander</creatorcontrib><creatorcontrib>Fieseler, Christian</creatorcontrib><title>Deep Learning Meets Deep Democracy: Deliberative Governance and Responsible Innovation in Artificial Intelligence</title><title>Business ethics quarterly</title><addtitle>Bus. Ethics Q</addtitle><description>Responsible innovation in artificial intelligence (AI) calls for public deliberation: well-informed “deep democratic” debate that involves actors from the public, private, and civil society sectors in joint efforts to critically address the goals and means of AI. Adopting such an approach constitutes a challenge, however, due to the opacity of AI and strong knowledge boundaries between experts and citizens. This undermines trust in AI and undercuts key conditions for deliberation. We approach this challenge as a problem of situating the knowledge of actors from the AI industry within a deliberative system. We develop a new framework of responsibilities for AI innovation as well as a deliberative governance approach for enacting these responsibilities. In elucidating this approach, we show how actors from the AI industry can most effectively engage with experts and nonexperts in different social venues to facilitate well-informed judgments on opaque AI systems and thus effectuate their democratic governance.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Civil society</subject><subject>Collaboration</subject><subject>Corporate governance</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Democracy</subject><subject>Design specifications</subject><subject>Epistemology</subject><subject>Ethics</subject><subject>Experts</subject><subject>Governance</subject><subject>Innovations</subject><subject>Learning</subject><subject>Social responsibility</subject><issn>1052-150X</issn><issn>2153-3326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkE1LAzEQhoMoWD9O_oGAR9mamWw2XW9SP6EiiIK3JZudLSnbpE22Bf-9Wyt48TTDzDPvO7yMXYAYgwB9XdN6jAJhnOMBGyEomUmJxSEbgVCYgRKfx-wkpYUQAOVEjtj6jmjFZ2Sid37OX4j6xH9md7QMNhr7dTO0naspmt5tiT-GLUVvvCVufMPfKK2CT67uiD97H7YDFTx3nt_G3rXOOtMNi566zs1puDpjR63pEp3_1lP28XD_Pn3KZq-Pz9PbWWZzLPqsaIy1jUDZKNBKlyXm1EAuC6nziW6VLYvWEtbKEBSIrdVyAsooY6iuEQt5yi73uqsY1htKfbUIm-HxLlWoNaAWZY4DdbWnbAwpRWqrVXRLE78qENUu02rItNplWv3QfE-TDd6lP3aSA2CZFzAg2a-gWdbRNXP68_1P8hs9QYPT</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Buhmann, Alexander</creator><creator>Fieseler, Christian</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88J</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M2O</scope><scope>M2R</scope><scope>MBDVC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2466-3867</orcidid><orcidid>https://orcid.org/0000-0001-8077-496X</orcidid></search><sort><creationdate>20230101</creationdate><title>Deep Learning Meets Deep Democracy: Deliberative Governance and Responsible Innovation in Artificial Intelligence</title><author>Buhmann, Alexander ; Fieseler, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-6daccd023d517579924ed143637487f5c96fce2b5ae1622fc73815a5aaebb2263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Civil society</topic><topic>Collaboration</topic><topic>Corporate governance</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Democracy</topic><topic>Design specifications</topic><topic>Epistemology</topic><topic>Ethics</topic><topic>Experts</topic><topic>Governance</topic><topic>Innovations</topic><topic>Learning</topic><topic>Social responsibility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buhmann, Alexander</creatorcontrib><creatorcontrib>Fieseler, Christian</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Social Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Business ethics quarterly</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buhmann, Alexander</au><au>Fieseler, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning Meets Deep Democracy: Deliberative Governance and Responsible Innovation in Artificial Intelligence</atitle><jtitle>Business ethics quarterly</jtitle><addtitle>Bus. Ethics Q</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>33</volume><issue>1</issue><spage>146</spage><epage>179</epage><pages>146-179</pages><issn>1052-150X</issn><eissn>2153-3326</eissn><abstract>Responsible innovation in artificial intelligence (AI) calls for public deliberation: well-informed “deep democratic” debate that involves actors from the public, private, and civil society sectors in joint efforts to critically address the goals and means of AI. Adopting such an approach constitutes a challenge, however, due to the opacity of AI and strong knowledge boundaries between experts and citizens. This undermines trust in AI and undercuts key conditions for deliberation. We approach this challenge as a problem of situating the knowledge of actors from the AI industry within a deliberative system. We develop a new framework of responsibilities for AI innovation as well as a deliberative governance approach for enacting these responsibilities. In elucidating this approach, we show how actors from the AI industry can most effectively engage with experts and nonexperts in different social venues to facilitate well-informed judgments on opaque AI systems and thus effectuate their democratic governance.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/beq.2021.42</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0002-2466-3867</orcidid><orcidid>https://orcid.org/0000-0001-8077-496X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1052-150X
ispartof Business ethics quarterly, 2023-01, Vol.33 (1), p.146-179
issn 1052-150X
2153-3326
language eng
recordid cdi_proquest_journals_2771270942
source Business Source Complete; Cambridge University Press Journals Complete
subjects Algorithms
Artificial intelligence
Civil society
Collaboration
Corporate governance
Decision making
Deep learning
Democracy
Design specifications
Epistemology
Ethics
Experts
Governance
Innovations
Learning
Social responsibility
title Deep Learning Meets Deep Democracy: Deliberative Governance and Responsible Innovation in Artificial Intelligence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T15%3A15%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%20Meets%20Deep%20Democracy:%20Deliberative%20Governance%20and%20Responsible%20Innovation%20in%20Artificial%20Intelligence&rft.jtitle=Business%20ethics%20quarterly&rft.au=Buhmann,%20Alexander&rft.date=2023-01-01&rft.volume=33&rft.issue=1&rft.spage=146&rft.epage=179&rft.pages=146-179&rft.issn=1052-150X&rft.eissn=2153-3326&rft_id=info:doi/10.1017/beq.2021.42&rft_dat=%3Cproquest_cross%3E2771270942%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2771270942&rft_id=info:pmid/&rft_cupid=10_1017_beq_2021_42&rfr_iscdi=true