General Covariance Data Augmentation for Neural PDE Solvers

The growing body of research shows how to replace classical partial differential equation (PDE) integrators with neural networks. The popular strategy is to generate the input-output pairs with a PDE solver, train the neural network in the regression setting, and use the trained model as a cheap sur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-05
Hauptverfasser: Fanaskov, Vladimir, Yu, Tianchi, Rudikov, Alexander, Oseledets, Ivan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Fanaskov, Vladimir
Yu, Tianchi
Rudikov, Alexander
Oseledets, Ivan
description The growing body of research shows how to replace classical partial differential equation (PDE) integrators with neural networks. The popular strategy is to generate the input-output pairs with a PDE solver, train the neural network in the regression setting, and use the trained model as a cheap surrogate for the solver. The bottleneck in this scheme is the number of expensive queries of a PDE solver needed to generate the dataset. To alleviate the problem, we propose a computationally cheap augmentation strategy based on general covariance and simple random coordinate transformations. Our approach relies on the fact that physical laws are independent of the coordinate choice, so the change in the coordinate system preserves the type of a parametric PDE and only changes PDE's data (e.g., initial conditions, diffusion coefficient). For tried neural networks and partial differential equations, proposed augmentation improves test error by 23% on average. The worst observed result is a 17% increase in test error for multilayer perceptron, and the best case is a 80% decrease for dilated residual network.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2771190779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2771190779</sourcerecordid><originalsourceid>FETCH-proquest_journals_27711907793</originalsourceid><addsrcrecordid>eNqNyssKgkAUgOEhCJLyHQ60FuaSTdIq1GoVQe3lEMdQbKbm4vNX0AO0-hf_N2GJVEpkm5WUM5Z633PO5VrLPFcJ2x7IkMMBSjui69DcCCoMCLt4f5AJGDproLUOThS_7lzVcLHDSM4v2LTFwVP665wt9_W1PGZPZ1-RfGh6G535rEZqLUTBtS7Uf-oNstI2mA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771190779</pqid></control><display><type>article</type><title>General Covariance Data Augmentation for Neural PDE Solvers</title><source>Free E- Journals</source><creator>Fanaskov, Vladimir ; Yu, Tianchi ; Rudikov, Alexander ; Oseledets, Ivan</creator><creatorcontrib>Fanaskov, Vladimir ; Yu, Tianchi ; Rudikov, Alexander ; Oseledets, Ivan</creatorcontrib><description>The growing body of research shows how to replace classical partial differential equation (PDE) integrators with neural networks. The popular strategy is to generate the input-output pairs with a PDE solver, train the neural network in the regression setting, and use the trained model as a cheap surrogate for the solver. The bottleneck in this scheme is the number of expensive queries of a PDE solver needed to generate the dataset. To alleviate the problem, we propose a computationally cheap augmentation strategy based on general covariance and simple random coordinate transformations. Our approach relies on the fact that physical laws are independent of the coordinate choice, so the change in the coordinate system preserves the type of a parametric PDE and only changes PDE's data (e.g., initial conditions, diffusion coefficient). For tried neural networks and partial differential equations, proposed augmentation improves test error by 23% on average. The worst observed result is a 17% increase in test error for multilayer perceptron, and the best case is a 80% decrease for dilated residual network.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Coordinate transformations ; Covariance ; Data augmentation ; Diffusion coefficient ; Initial conditions ; Multilayer perceptrons ; Neural networks ; Partial differential equations ; Solvers</subject><ispartof>arXiv.org, 2023-05</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Fanaskov, Vladimir</creatorcontrib><creatorcontrib>Yu, Tianchi</creatorcontrib><creatorcontrib>Rudikov, Alexander</creatorcontrib><creatorcontrib>Oseledets, Ivan</creatorcontrib><title>General Covariance Data Augmentation for Neural PDE Solvers</title><title>arXiv.org</title><description>The growing body of research shows how to replace classical partial differential equation (PDE) integrators with neural networks. The popular strategy is to generate the input-output pairs with a PDE solver, train the neural network in the regression setting, and use the trained model as a cheap surrogate for the solver. The bottleneck in this scheme is the number of expensive queries of a PDE solver needed to generate the dataset. To alleviate the problem, we propose a computationally cheap augmentation strategy based on general covariance and simple random coordinate transformations. Our approach relies on the fact that physical laws are independent of the coordinate choice, so the change in the coordinate system preserves the type of a parametric PDE and only changes PDE's data (e.g., initial conditions, diffusion coefficient). For tried neural networks and partial differential equations, proposed augmentation improves test error by 23% on average. The worst observed result is a 17% increase in test error for multilayer perceptron, and the best case is a 80% decrease for dilated residual network.</description><subject>Coordinate transformations</subject><subject>Covariance</subject><subject>Data augmentation</subject><subject>Diffusion coefficient</subject><subject>Initial conditions</subject><subject>Multilayer perceptrons</subject><subject>Neural networks</subject><subject>Partial differential equations</subject><subject>Solvers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyssKgkAUgOEhCJLyHQ60FuaSTdIq1GoVQe3lEMdQbKbm4vNX0AO0-hf_N2GJVEpkm5WUM5Z633PO5VrLPFcJ2x7IkMMBSjui69DcCCoMCLt4f5AJGDproLUOThS_7lzVcLHDSM4v2LTFwVP665wt9_W1PGZPZ1-RfGh6G535rEZqLUTBtS7Uf-oNstI2mA</recordid><startdate>20230531</startdate><enddate>20230531</enddate><creator>Fanaskov, Vladimir</creator><creator>Yu, Tianchi</creator><creator>Rudikov, Alexander</creator><creator>Oseledets, Ivan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230531</creationdate><title>General Covariance Data Augmentation for Neural PDE Solvers</title><author>Fanaskov, Vladimir ; Yu, Tianchi ; Rudikov, Alexander ; Oseledets, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27711907793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Coordinate transformations</topic><topic>Covariance</topic><topic>Data augmentation</topic><topic>Diffusion coefficient</topic><topic>Initial conditions</topic><topic>Multilayer perceptrons</topic><topic>Neural networks</topic><topic>Partial differential equations</topic><topic>Solvers</topic><toplevel>online_resources</toplevel><creatorcontrib>Fanaskov, Vladimir</creatorcontrib><creatorcontrib>Yu, Tianchi</creatorcontrib><creatorcontrib>Rudikov, Alexander</creatorcontrib><creatorcontrib>Oseledets, Ivan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fanaskov, Vladimir</au><au>Yu, Tianchi</au><au>Rudikov, Alexander</au><au>Oseledets, Ivan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>General Covariance Data Augmentation for Neural PDE Solvers</atitle><jtitle>arXiv.org</jtitle><date>2023-05-31</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>The growing body of research shows how to replace classical partial differential equation (PDE) integrators with neural networks. The popular strategy is to generate the input-output pairs with a PDE solver, train the neural network in the regression setting, and use the trained model as a cheap surrogate for the solver. The bottleneck in this scheme is the number of expensive queries of a PDE solver needed to generate the dataset. To alleviate the problem, we propose a computationally cheap augmentation strategy based on general covariance and simple random coordinate transformations. Our approach relies on the fact that physical laws are independent of the coordinate choice, so the change in the coordinate system preserves the type of a parametric PDE and only changes PDE's data (e.g., initial conditions, diffusion coefficient). For tried neural networks and partial differential equations, proposed augmentation improves test error by 23% on average. The worst observed result is a 17% increase in test error for multilayer perceptron, and the best case is a 80% decrease for dilated residual network.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2771190779
source Free E- Journals
subjects Coordinate transformations
Covariance
Data augmentation
Diffusion coefficient
Initial conditions
Multilayer perceptrons
Neural networks
Partial differential equations
Solvers
title General Covariance Data Augmentation for Neural PDE Solvers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T02%3A46%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=General%20Covariance%20Data%20Augmentation%20for%20Neural%20PDE%20Solvers&rft.jtitle=arXiv.org&rft.au=Fanaskov,%20Vladimir&rft.date=2023-05-31&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2771190779%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2771190779&rft_id=info:pmid/&rfr_iscdi=true