Microfluidic soluto-hydrodynamics using interactive patterned wall-slip and oscillatory thermo-capillarity
Thermo-capillarity-induced Marangoni hydrodynamics and consequent solutal transport within a microfluidic, immiscible binary-fluid system are theoretically explored. The soluto-hydrodynamics is achieved by the application of decisive-sinusoidal thermal stimuli and suitable wettability patterns at th...
Gespeichert in:
Veröffentlicht in: | Microfluidics and nanofluidics 2023-03, Vol.27 (3), p.18, Article 18 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 18 |
container_title | Microfluidics and nanofluidics |
container_volume | 27 |
creator | Agrawal, Shubham Das, Prashanta K. Dhar, Purbarun |
description | Thermo-capillarity-induced Marangoni hydrodynamics and consequent solutal transport within a microfluidic, immiscible binary-fluid system are theoretically explored. The soluto-hydrodynamics is achieved by the application of decisive-sinusoidal thermal stimuli and suitable wettability patterns at the walls. The coupled momentum and energy balance equations are solved semi-analytically under creeping flow and quasi-deformed interface assumptions. The parametric influence of the thermal and the slip boundary conditions on the hydrodynamic transport phenomena in a microchannel is discussed. It is delineated that the thermal and the slip perturbations govern the vortex transport and stretching, respectively, while their interplay controls the solutal mixing efficiency of the system. The asymmetry in the boundary conditions leads to a non-zero discharge rate through the microfluidic domain, leading to localized net transport without any mechanical driving source. The discharge rate increases with the thermal perturbation amplitude and the slip length, but dependence on the slip length is vital only for higher values of thermal perturbation amplitude. Lastly, the solute transport in the system is also analyzed for a given set of inlet concentration profiles. The species transport equation is solved semi-analytically to obtain the concentration distribution within the microchannel. The outcomes of the work can play a pivotal role in upgrading microfluidic technologies to attain quick sample processing, mixing efficacy and thermo-capillarity-driven soluto-hydrodynamics. |
doi_str_mv | 10.1007/s10404-023-02627-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2771181350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2771181350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f76557c85f4b273b9a2ccf4718948c607cb2e3350411479351756a34d94e50283</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gKuA62hubdqlDN5gxI2uQ5qmMxkyTU1SpW9vxoruXBzOhf87h_MDcEnwNcFY3ESCOeYIU5ajpAKVR2BBSsIQr2t8_FtX9BScxbjDmAtK8ALsnq0OvnOjba2G0bsxebSd2uDbqVd7qyMco-030PbJBKWT_TBwUCk3vWnhp3IORWcHqPoW-qitcyr5MMG0NWHvkVbDYRRsms7BSadcNBc_eQne7u9eV49o_fLwtLpdI81InVAnyqIQuio63lDBmlpRrTsuSFXzSpdY6IYaxgrMCeGiZgURRakYb2tuCkwrtgRX894h-PfRxCR3fgx9PimpEIRUJMNZRWdVfj_GYDo5BLtXYZIEy4OncvZUZk_lt6eyzBCboZjF_caEv9X_UF-ktnsJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771181350</pqid></control><display><type>article</type><title>Microfluidic soluto-hydrodynamics using interactive patterned wall-slip and oscillatory thermo-capillarity</title><source>Springer Nature - Complete Springer Journals</source><creator>Agrawal, Shubham ; Das, Prashanta K. ; Dhar, Purbarun</creator><creatorcontrib>Agrawal, Shubham ; Das, Prashanta K. ; Dhar, Purbarun</creatorcontrib><description>Thermo-capillarity-induced Marangoni hydrodynamics and consequent solutal transport within a microfluidic, immiscible binary-fluid system are theoretically explored. The soluto-hydrodynamics is achieved by the application of decisive-sinusoidal thermal stimuli and suitable wettability patterns at the walls. The coupled momentum and energy balance equations are solved semi-analytically under creeping flow and quasi-deformed interface assumptions. The parametric influence of the thermal and the slip boundary conditions on the hydrodynamic transport phenomena in a microchannel is discussed. It is delineated that the thermal and the slip perturbations govern the vortex transport and stretching, respectively, while their interplay controls the solutal mixing efficiency of the system. The asymmetry in the boundary conditions leads to a non-zero discharge rate through the microfluidic domain, leading to localized net transport without any mechanical driving source. The discharge rate increases with the thermal perturbation amplitude and the slip length, but dependence on the slip length is vital only for higher values of thermal perturbation amplitude. Lastly, the solute transport in the system is also analyzed for a given set of inlet concentration profiles. The species transport equation is solved semi-analytically to obtain the concentration distribution within the microchannel. The outcomes of the work can play a pivotal role in upgrading microfluidic technologies to attain quick sample processing, mixing efficacy and thermo-capillarity-driven soluto-hydrodynamics.</description><identifier>ISSN: 1613-4982</identifier><identifier>EISSN: 1613-4990</identifier><identifier>DOI: 10.1007/s10404-023-02627-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Amplitude ; Amplitudes ; Analytical Chemistry ; Biomedical Engineering and Bioengineering ; Boundary conditions ; Capillarity ; Coupled walls ; Discharge ; Energy balance ; Engineering ; Engineering Fluid Dynamics ; Fluid mechanics ; Hydrodynamics ; Microchannels ; Microfluidics ; Momentum ; Nanotechnology and Microengineering ; Perturbation ; Research Paper ; Solute transport ; Solutes ; Thermal stimuli ; Transport ; Transport equations ; Transport phenomena ; Wall slip ; Wettability ; Zero discharge</subject><ispartof>Microfluidics and nanofluidics, 2023-03, Vol.27 (3), p.18, Article 18</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f76557c85f4b273b9a2ccf4718948c607cb2e3350411479351756a34d94e50283</citedby><cites>FETCH-LOGICAL-c319t-f76557c85f4b273b9a2ccf4718948c607cb2e3350411479351756a34d94e50283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10404-023-02627-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10404-023-02627-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Agrawal, Shubham</creatorcontrib><creatorcontrib>Das, Prashanta K.</creatorcontrib><creatorcontrib>Dhar, Purbarun</creatorcontrib><title>Microfluidic soluto-hydrodynamics using interactive patterned wall-slip and oscillatory thermo-capillarity</title><title>Microfluidics and nanofluidics</title><addtitle>Microfluid Nanofluid</addtitle><description>Thermo-capillarity-induced Marangoni hydrodynamics and consequent solutal transport within a microfluidic, immiscible binary-fluid system are theoretically explored. The soluto-hydrodynamics is achieved by the application of decisive-sinusoidal thermal stimuli and suitable wettability patterns at the walls. The coupled momentum and energy balance equations are solved semi-analytically under creeping flow and quasi-deformed interface assumptions. The parametric influence of the thermal and the slip boundary conditions on the hydrodynamic transport phenomena in a microchannel is discussed. It is delineated that the thermal and the slip perturbations govern the vortex transport and stretching, respectively, while their interplay controls the solutal mixing efficiency of the system. The asymmetry in the boundary conditions leads to a non-zero discharge rate through the microfluidic domain, leading to localized net transport without any mechanical driving source. The discharge rate increases with the thermal perturbation amplitude and the slip length, but dependence on the slip length is vital only for higher values of thermal perturbation amplitude. Lastly, the solute transport in the system is also analyzed for a given set of inlet concentration profiles. The species transport equation is solved semi-analytically to obtain the concentration distribution within the microchannel. The outcomes of the work can play a pivotal role in upgrading microfluidic technologies to attain quick sample processing, mixing efficacy and thermo-capillarity-driven soluto-hydrodynamics.</description><subject>Amplitude</subject><subject>Amplitudes</subject><subject>Analytical Chemistry</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Boundary conditions</subject><subject>Capillarity</subject><subject>Coupled walls</subject><subject>Discharge</subject><subject>Energy balance</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Fluid mechanics</subject><subject>Hydrodynamics</subject><subject>Microchannels</subject><subject>Microfluidics</subject><subject>Momentum</subject><subject>Nanotechnology and Microengineering</subject><subject>Perturbation</subject><subject>Research Paper</subject><subject>Solute transport</subject><subject>Solutes</subject><subject>Thermal stimuli</subject><subject>Transport</subject><subject>Transport equations</subject><subject>Transport phenomena</subject><subject>Wall slip</subject><subject>Wettability</subject><subject>Zero discharge</subject><issn>1613-4982</issn><issn>1613-4990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtKxDAUhoMoOI6-gKuA62hubdqlDN5gxI2uQ5qmMxkyTU1SpW9vxoruXBzOhf87h_MDcEnwNcFY3ESCOeYIU5ajpAKVR2BBSsIQr2t8_FtX9BScxbjDmAtK8ALsnq0OvnOjba2G0bsxebSd2uDbqVd7qyMco-030PbJBKWT_TBwUCk3vWnhp3IORWcHqPoW-qitcyr5MMG0NWHvkVbDYRRsms7BSadcNBc_eQne7u9eV49o_fLwtLpdI81InVAnyqIQuio63lDBmlpRrTsuSFXzSpdY6IYaxgrMCeGiZgURRakYb2tuCkwrtgRX894h-PfRxCR3fgx9PimpEIRUJMNZRWdVfj_GYDo5BLtXYZIEy4OncvZUZk_lt6eyzBCboZjF_caEv9X_UF-ktnsJ</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Agrawal, Shubham</creator><creator>Das, Prashanta K.</creator><creator>Dhar, Purbarun</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>S0W</scope></search><sort><creationdate>20230301</creationdate><title>Microfluidic soluto-hydrodynamics using interactive patterned wall-slip and oscillatory thermo-capillarity</title><author>Agrawal, Shubham ; Das, Prashanta K. ; Dhar, Purbarun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f76557c85f4b273b9a2ccf4718948c607cb2e3350411479351756a34d94e50283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amplitude</topic><topic>Amplitudes</topic><topic>Analytical Chemistry</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Boundary conditions</topic><topic>Capillarity</topic><topic>Coupled walls</topic><topic>Discharge</topic><topic>Energy balance</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Fluid mechanics</topic><topic>Hydrodynamics</topic><topic>Microchannels</topic><topic>Microfluidics</topic><topic>Momentum</topic><topic>Nanotechnology and Microengineering</topic><topic>Perturbation</topic><topic>Research Paper</topic><topic>Solute transport</topic><topic>Solutes</topic><topic>Thermal stimuli</topic><topic>Transport</topic><topic>Transport equations</topic><topic>Transport phenomena</topic><topic>Wall slip</topic><topic>Wettability</topic><topic>Zero discharge</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agrawal, Shubham</creatorcontrib><creatorcontrib>Das, Prashanta K.</creatorcontrib><creatorcontrib>Dhar, Purbarun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Microfluidics and nanofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agrawal, Shubham</au><au>Das, Prashanta K.</au><au>Dhar, Purbarun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microfluidic soluto-hydrodynamics using interactive patterned wall-slip and oscillatory thermo-capillarity</atitle><jtitle>Microfluidics and nanofluidics</jtitle><stitle>Microfluid Nanofluid</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>27</volume><issue>3</issue><spage>18</spage><pages>18-</pages><artnum>18</artnum><issn>1613-4982</issn><eissn>1613-4990</eissn><abstract>Thermo-capillarity-induced Marangoni hydrodynamics and consequent solutal transport within a microfluidic, immiscible binary-fluid system are theoretically explored. The soluto-hydrodynamics is achieved by the application of decisive-sinusoidal thermal stimuli and suitable wettability patterns at the walls. The coupled momentum and energy balance equations are solved semi-analytically under creeping flow and quasi-deformed interface assumptions. The parametric influence of the thermal and the slip boundary conditions on the hydrodynamic transport phenomena in a microchannel is discussed. It is delineated that the thermal and the slip perturbations govern the vortex transport and stretching, respectively, while their interplay controls the solutal mixing efficiency of the system. The asymmetry in the boundary conditions leads to a non-zero discharge rate through the microfluidic domain, leading to localized net transport without any mechanical driving source. The discharge rate increases with the thermal perturbation amplitude and the slip length, but dependence on the slip length is vital only for higher values of thermal perturbation amplitude. Lastly, the solute transport in the system is also analyzed for a given set of inlet concentration profiles. The species transport equation is solved semi-analytically to obtain the concentration distribution within the microchannel. The outcomes of the work can play a pivotal role in upgrading microfluidic technologies to attain quick sample processing, mixing efficacy and thermo-capillarity-driven soluto-hydrodynamics.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10404-023-02627-6</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-4982 |
ispartof | Microfluidics and nanofluidics, 2023-03, Vol.27 (3), p.18, Article 18 |
issn | 1613-4982 1613-4990 |
language | eng |
recordid | cdi_proquest_journals_2771181350 |
source | Springer Nature - Complete Springer Journals |
subjects | Amplitude Amplitudes Analytical Chemistry Biomedical Engineering and Bioengineering Boundary conditions Capillarity Coupled walls Discharge Energy balance Engineering Engineering Fluid Dynamics Fluid mechanics Hydrodynamics Microchannels Microfluidics Momentum Nanotechnology and Microengineering Perturbation Research Paper Solute transport Solutes Thermal stimuli Transport Transport equations Transport phenomena Wall slip Wettability Zero discharge |
title | Microfluidic soluto-hydrodynamics using interactive patterned wall-slip and oscillatory thermo-capillarity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T03%3A21%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microfluidic%20soluto-hydrodynamics%20using%20interactive%20patterned%20wall-slip%20and%20oscillatory%20thermo-capillarity&rft.jtitle=Microfluidics%20and%20nanofluidics&rft.au=Agrawal,%20Shubham&rft.date=2023-03-01&rft.volume=27&rft.issue=3&rft.spage=18&rft.pages=18-&rft.artnum=18&rft.issn=1613-4982&rft.eissn=1613-4990&rft_id=info:doi/10.1007/s10404-023-02627-6&rft_dat=%3Cproquest_cross%3E2771181350%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2771181350&rft_id=info:pmid/&rfr_iscdi=true |