Microfluidic soluto-hydrodynamics using interactive patterned wall-slip and oscillatory thermo-capillarity

Thermo-capillarity-induced Marangoni hydrodynamics and consequent solutal transport within a microfluidic, immiscible binary-fluid system are theoretically explored. The soluto-hydrodynamics is achieved by the application of decisive-sinusoidal thermal stimuli and suitable wettability patterns at th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microfluidics and nanofluidics 2023-03, Vol.27 (3), p.18, Article 18
Hauptverfasser: Agrawal, Shubham, Das, Prashanta K., Dhar, Purbarun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 18
container_title Microfluidics and nanofluidics
container_volume 27
creator Agrawal, Shubham
Das, Prashanta K.
Dhar, Purbarun
description Thermo-capillarity-induced Marangoni hydrodynamics and consequent solutal transport within a microfluidic, immiscible binary-fluid system are theoretically explored. The soluto-hydrodynamics is achieved by the application of decisive-sinusoidal thermal stimuli and suitable wettability patterns at the walls. The coupled momentum and energy balance equations are solved semi-analytically under creeping flow and quasi-deformed interface assumptions. The parametric influence of the thermal and the slip boundary conditions on the hydrodynamic transport phenomena in a microchannel is discussed. It is delineated that the thermal and the slip perturbations govern the vortex transport and stretching, respectively, while their interplay controls the solutal mixing efficiency of the system. The asymmetry in the boundary conditions leads to a non-zero discharge rate through the microfluidic domain, leading to localized net transport without any mechanical driving source. The discharge rate increases with the thermal perturbation amplitude and the slip length, but dependence on the slip length is vital only for higher values of thermal perturbation amplitude. Lastly, the solute transport in the system is also analyzed for a given set of inlet concentration profiles. The species transport equation is solved semi-analytically to obtain the concentration distribution within the microchannel. The outcomes of the work can play a pivotal role in upgrading microfluidic technologies to attain quick sample processing, mixing efficacy and thermo-capillarity-driven soluto-hydrodynamics.
doi_str_mv 10.1007/s10404-023-02627-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2771181350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2771181350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f76557c85f4b273b9a2ccf4718948c607cb2e3350411479351756a34d94e50283</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gKuA62hubdqlDN5gxI2uQ5qmMxkyTU1SpW9vxoruXBzOhf87h_MDcEnwNcFY3ESCOeYIU5ajpAKVR2BBSsIQr2t8_FtX9BScxbjDmAtK8ALsnq0OvnOjba2G0bsxebSd2uDbqVd7qyMco-030PbJBKWT_TBwUCk3vWnhp3IORWcHqPoW-qitcyr5MMG0NWHvkVbDYRRsms7BSadcNBc_eQne7u9eV49o_fLwtLpdI81InVAnyqIQuio63lDBmlpRrTsuSFXzSpdY6IYaxgrMCeGiZgURRakYb2tuCkwrtgRX894h-PfRxCR3fgx9PimpEIRUJMNZRWdVfj_GYDo5BLtXYZIEy4OncvZUZk_lt6eyzBCboZjF_caEv9X_UF-ktnsJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771181350</pqid></control><display><type>article</type><title>Microfluidic soluto-hydrodynamics using interactive patterned wall-slip and oscillatory thermo-capillarity</title><source>Springer Nature - Complete Springer Journals</source><creator>Agrawal, Shubham ; Das, Prashanta K. ; Dhar, Purbarun</creator><creatorcontrib>Agrawal, Shubham ; Das, Prashanta K. ; Dhar, Purbarun</creatorcontrib><description>Thermo-capillarity-induced Marangoni hydrodynamics and consequent solutal transport within a microfluidic, immiscible binary-fluid system are theoretically explored. The soluto-hydrodynamics is achieved by the application of decisive-sinusoidal thermal stimuli and suitable wettability patterns at the walls. The coupled momentum and energy balance equations are solved semi-analytically under creeping flow and quasi-deformed interface assumptions. The parametric influence of the thermal and the slip boundary conditions on the hydrodynamic transport phenomena in a microchannel is discussed. It is delineated that the thermal and the slip perturbations govern the vortex transport and stretching, respectively, while their interplay controls the solutal mixing efficiency of the system. The asymmetry in the boundary conditions leads to a non-zero discharge rate through the microfluidic domain, leading to localized net transport without any mechanical driving source. The discharge rate increases with the thermal perturbation amplitude and the slip length, but dependence on the slip length is vital only for higher values of thermal perturbation amplitude. Lastly, the solute transport in the system is also analyzed for a given set of inlet concentration profiles. The species transport equation is solved semi-analytically to obtain the concentration distribution within the microchannel. The outcomes of the work can play a pivotal role in upgrading microfluidic technologies to attain quick sample processing, mixing efficacy and thermo-capillarity-driven soluto-hydrodynamics.</description><identifier>ISSN: 1613-4982</identifier><identifier>EISSN: 1613-4990</identifier><identifier>DOI: 10.1007/s10404-023-02627-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Amplitude ; Amplitudes ; Analytical Chemistry ; Biomedical Engineering and Bioengineering ; Boundary conditions ; Capillarity ; Coupled walls ; Discharge ; Energy balance ; Engineering ; Engineering Fluid Dynamics ; Fluid mechanics ; Hydrodynamics ; Microchannels ; Microfluidics ; Momentum ; Nanotechnology and Microengineering ; Perturbation ; Research Paper ; Solute transport ; Solutes ; Thermal stimuli ; Transport ; Transport equations ; Transport phenomena ; Wall slip ; Wettability ; Zero discharge</subject><ispartof>Microfluidics and nanofluidics, 2023-03, Vol.27 (3), p.18, Article 18</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f76557c85f4b273b9a2ccf4718948c607cb2e3350411479351756a34d94e50283</citedby><cites>FETCH-LOGICAL-c319t-f76557c85f4b273b9a2ccf4718948c607cb2e3350411479351756a34d94e50283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10404-023-02627-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10404-023-02627-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Agrawal, Shubham</creatorcontrib><creatorcontrib>Das, Prashanta K.</creatorcontrib><creatorcontrib>Dhar, Purbarun</creatorcontrib><title>Microfluidic soluto-hydrodynamics using interactive patterned wall-slip and oscillatory thermo-capillarity</title><title>Microfluidics and nanofluidics</title><addtitle>Microfluid Nanofluid</addtitle><description>Thermo-capillarity-induced Marangoni hydrodynamics and consequent solutal transport within a microfluidic, immiscible binary-fluid system are theoretically explored. The soluto-hydrodynamics is achieved by the application of decisive-sinusoidal thermal stimuli and suitable wettability patterns at the walls. The coupled momentum and energy balance equations are solved semi-analytically under creeping flow and quasi-deformed interface assumptions. The parametric influence of the thermal and the slip boundary conditions on the hydrodynamic transport phenomena in a microchannel is discussed. It is delineated that the thermal and the slip perturbations govern the vortex transport and stretching, respectively, while their interplay controls the solutal mixing efficiency of the system. The asymmetry in the boundary conditions leads to a non-zero discharge rate through the microfluidic domain, leading to localized net transport without any mechanical driving source. The discharge rate increases with the thermal perturbation amplitude and the slip length, but dependence on the slip length is vital only for higher values of thermal perturbation amplitude. Lastly, the solute transport in the system is also analyzed for a given set of inlet concentration profiles. The species transport equation is solved semi-analytically to obtain the concentration distribution within the microchannel. The outcomes of the work can play a pivotal role in upgrading microfluidic technologies to attain quick sample processing, mixing efficacy and thermo-capillarity-driven soluto-hydrodynamics.</description><subject>Amplitude</subject><subject>Amplitudes</subject><subject>Analytical Chemistry</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Boundary conditions</subject><subject>Capillarity</subject><subject>Coupled walls</subject><subject>Discharge</subject><subject>Energy balance</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Fluid mechanics</subject><subject>Hydrodynamics</subject><subject>Microchannels</subject><subject>Microfluidics</subject><subject>Momentum</subject><subject>Nanotechnology and Microengineering</subject><subject>Perturbation</subject><subject>Research Paper</subject><subject>Solute transport</subject><subject>Solutes</subject><subject>Thermal stimuli</subject><subject>Transport</subject><subject>Transport equations</subject><subject>Transport phenomena</subject><subject>Wall slip</subject><subject>Wettability</subject><subject>Zero discharge</subject><issn>1613-4982</issn><issn>1613-4990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtKxDAUhoMoOI6-gKuA62hubdqlDN5gxI2uQ5qmMxkyTU1SpW9vxoruXBzOhf87h_MDcEnwNcFY3ESCOeYIU5ajpAKVR2BBSsIQr2t8_FtX9BScxbjDmAtK8ALsnq0OvnOjba2G0bsxebSd2uDbqVd7qyMco-030PbJBKWT_TBwUCk3vWnhp3IORWcHqPoW-qitcyr5MMG0NWHvkVbDYRRsms7BSadcNBc_eQne7u9eV49o_fLwtLpdI81InVAnyqIQuio63lDBmlpRrTsuSFXzSpdY6IYaxgrMCeGiZgURRakYb2tuCkwrtgRX894h-PfRxCR3fgx9PimpEIRUJMNZRWdVfj_GYDo5BLtXYZIEy4OncvZUZk_lt6eyzBCboZjF_caEv9X_UF-ktnsJ</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Agrawal, Shubham</creator><creator>Das, Prashanta K.</creator><creator>Dhar, Purbarun</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>S0W</scope></search><sort><creationdate>20230301</creationdate><title>Microfluidic soluto-hydrodynamics using interactive patterned wall-slip and oscillatory thermo-capillarity</title><author>Agrawal, Shubham ; Das, Prashanta K. ; Dhar, Purbarun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f76557c85f4b273b9a2ccf4718948c607cb2e3350411479351756a34d94e50283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amplitude</topic><topic>Amplitudes</topic><topic>Analytical Chemistry</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Boundary conditions</topic><topic>Capillarity</topic><topic>Coupled walls</topic><topic>Discharge</topic><topic>Energy balance</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Fluid mechanics</topic><topic>Hydrodynamics</topic><topic>Microchannels</topic><topic>Microfluidics</topic><topic>Momentum</topic><topic>Nanotechnology and Microengineering</topic><topic>Perturbation</topic><topic>Research Paper</topic><topic>Solute transport</topic><topic>Solutes</topic><topic>Thermal stimuli</topic><topic>Transport</topic><topic>Transport equations</topic><topic>Transport phenomena</topic><topic>Wall slip</topic><topic>Wettability</topic><topic>Zero discharge</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agrawal, Shubham</creatorcontrib><creatorcontrib>Das, Prashanta K.</creatorcontrib><creatorcontrib>Dhar, Purbarun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Microfluidics and nanofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agrawal, Shubham</au><au>Das, Prashanta K.</au><au>Dhar, Purbarun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microfluidic soluto-hydrodynamics using interactive patterned wall-slip and oscillatory thermo-capillarity</atitle><jtitle>Microfluidics and nanofluidics</jtitle><stitle>Microfluid Nanofluid</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>27</volume><issue>3</issue><spage>18</spage><pages>18-</pages><artnum>18</artnum><issn>1613-4982</issn><eissn>1613-4990</eissn><abstract>Thermo-capillarity-induced Marangoni hydrodynamics and consequent solutal transport within a microfluidic, immiscible binary-fluid system are theoretically explored. The soluto-hydrodynamics is achieved by the application of decisive-sinusoidal thermal stimuli and suitable wettability patterns at the walls. The coupled momentum and energy balance equations are solved semi-analytically under creeping flow and quasi-deformed interface assumptions. The parametric influence of the thermal and the slip boundary conditions on the hydrodynamic transport phenomena in a microchannel is discussed. It is delineated that the thermal and the slip perturbations govern the vortex transport and stretching, respectively, while their interplay controls the solutal mixing efficiency of the system. The asymmetry in the boundary conditions leads to a non-zero discharge rate through the microfluidic domain, leading to localized net transport without any mechanical driving source. The discharge rate increases with the thermal perturbation amplitude and the slip length, but dependence on the slip length is vital only for higher values of thermal perturbation amplitude. Lastly, the solute transport in the system is also analyzed for a given set of inlet concentration profiles. The species transport equation is solved semi-analytically to obtain the concentration distribution within the microchannel. The outcomes of the work can play a pivotal role in upgrading microfluidic technologies to attain quick sample processing, mixing efficacy and thermo-capillarity-driven soluto-hydrodynamics.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10404-023-02627-6</doi></addata></record>
fulltext fulltext
identifier ISSN: 1613-4982
ispartof Microfluidics and nanofluidics, 2023-03, Vol.27 (3), p.18, Article 18
issn 1613-4982
1613-4990
language eng
recordid cdi_proquest_journals_2771181350
source Springer Nature - Complete Springer Journals
subjects Amplitude
Amplitudes
Analytical Chemistry
Biomedical Engineering and Bioengineering
Boundary conditions
Capillarity
Coupled walls
Discharge
Energy balance
Engineering
Engineering Fluid Dynamics
Fluid mechanics
Hydrodynamics
Microchannels
Microfluidics
Momentum
Nanotechnology and Microengineering
Perturbation
Research Paper
Solute transport
Solutes
Thermal stimuli
Transport
Transport equations
Transport phenomena
Wall slip
Wettability
Zero discharge
title Microfluidic soluto-hydrodynamics using interactive patterned wall-slip and oscillatory thermo-capillarity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T03%3A21%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microfluidic%20soluto-hydrodynamics%20using%20interactive%20patterned%20wall-slip%20and%20oscillatory%20thermo-capillarity&rft.jtitle=Microfluidics%20and%20nanofluidics&rft.au=Agrawal,%20Shubham&rft.date=2023-03-01&rft.volume=27&rft.issue=3&rft.spage=18&rft.pages=18-&rft.artnum=18&rft.issn=1613-4982&rft.eissn=1613-4990&rft_id=info:doi/10.1007/s10404-023-02627-6&rft_dat=%3Cproquest_cross%3E2771181350%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2771181350&rft_id=info:pmid/&rfr_iscdi=true