Configurational forces in ferroelectric structures analyzed by a macromechanical switching model

Polycrystalline ferroelectric ceramics are widely used in sensors, actuators, microelectromechanical systems, etc. If a ferroelectric structure possesses some defects like voids or inhomogeneities, its reliability is reduced, and undesired non-homogeneous local concentrations of the electromechanica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mechanica 2023, Vol.234 (1), p.17-36
Hauptverfasser: Kozinov, Sergey, Kuna, Meinhard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 36
container_issue 1
container_start_page 17
container_title Acta mechanica
container_volume 234
creator Kozinov, Sergey
Kuna, Meinhard
description Polycrystalline ferroelectric ceramics are widely used in sensors, actuators, microelectromechanical systems, etc. If a ferroelectric structure possesses some defects like voids or inhomogeneities, its reliability is reduced, and undesired non-homogeneous local concentrations of the electromechanical fields occur. Under the applied external loading, a domain switching region evolves in the vicinity of defects, which is manifested as a reorientation of the remanent polarization vector. In the current work, the nonlinear electromechanical behavior of ferroelectric ceramics is computed by means of three-dimensional finite element analysis, using the phenomenological continuum mechanics model suggested by Landis (J. Mech. Phys. Solids 50(1):127–152, 2002. https://doi.org/10.1016/s0022-5096(01)00021-7 ) and numerically implemented by Stark (Int. J. Solids Struct. 80:359–367, 2015. https://doi.org/10.1016/j.ijsolstr.2015.09.004 ). This constitutive law is combined with user-developed elements in Abaqus  commercial code for nonlinear coupled electromechanical analyses. By use of the numerical simulations, the evolution of all field variables, in particular of the polarization, is tracked. In a post-processing step, the configurational forces are computed, which express the thermodynamic driving forces acting on the defect. As a typical defect, we consider a circular void in the ferroelectric structure exposed to an alternating electric field. Additionally to the void, other inhomogeneities, namely, a strip of dissimilar material as well as dielectric and piezoelectric inclusions, are investigated. For all cases, the redistribution and evolution of the configurational forces are studied. Besides the essential findings and methodology achieved in this work, the developed software can serve as a basis for further investigations on the failure of composite smart structures and explicit crack modeling using fracture mechanical concepts.
doi_str_mv 10.1007/s00707-022-03265-9
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2771177978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A735458981</galeid><sourcerecordid>A735458981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-550015ec074e9dd7dbe7cd1e25a803af63923dffa7431ff0cd49d3ede8146cbe3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wNWA69Q8ZiaTZSm-oOBG1zFNbtqUmUlNZpD6642O4E4CN9yb811ODkLXlCwoIeI25UIEJoxhwlldYXmCZrSmEteSi1M0I4RQXElBztFFSvvcMVHSGXpbhd757Rj14EOv28KFaCAVvi8cxBigBTNEb4o0xNEMY8xvOuuOn2CLzbHQRadNDB2Yne69yQvShx_MzvfbogsW2kt05nSb4Or3nqPX-7uX1SNePz88rZZrbDhnA66qbKkCQ0QJ0lphNyCMpcAq3RCuXc0l49Y5LUpOnSPGltJysNDQsjYb4HN0M-09xPA-QhrUPowxO02KCUGpEFI0WbWYVFvdgvK9C0PUJh8LnTehB-fzfCl4VVaNbGgG2ATkT6YUwalD9J2OR0WJ-o5eTdGrHL36iV7JDPEJSlncbyH-efmH-gIO44jf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771177978</pqid></control><display><type>article</type><title>Configurational forces in ferroelectric structures analyzed by a macromechanical switching model</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kozinov, Sergey ; Kuna, Meinhard</creator><creatorcontrib>Kozinov, Sergey ; Kuna, Meinhard</creatorcontrib><description>Polycrystalline ferroelectric ceramics are widely used in sensors, actuators, microelectromechanical systems, etc. If a ferroelectric structure possesses some defects like voids or inhomogeneities, its reliability is reduced, and undesired non-homogeneous local concentrations of the electromechanical fields occur. Under the applied external loading, a domain switching region evolves in the vicinity of defects, which is manifested as a reorientation of the remanent polarization vector. In the current work, the nonlinear electromechanical behavior of ferroelectric ceramics is computed by means of three-dimensional finite element analysis, using the phenomenological continuum mechanics model suggested by Landis (J. Mech. Phys. Solids 50(1):127–152, 2002. https://doi.org/10.1016/s0022-5096(01)00021-7 ) and numerically implemented by Stark (Int. J. Solids Struct. 80:359–367, 2015. https://doi.org/10.1016/j.ijsolstr.2015.09.004 ). This constitutive law is combined with user-developed elements in Abaqus  commercial code for nonlinear coupled electromechanical analyses. By use of the numerical simulations, the evolution of all field variables, in particular of the polarization, is tracked. In a post-processing step, the configurational forces are computed, which express the thermodynamic driving forces acting on the defect. As a typical defect, we consider a circular void in the ferroelectric structure exposed to an alternating electric field. Additionally to the void, other inhomogeneities, namely, a strip of dissimilar material as well as dielectric and piezoelectric inclusions, are investigated. For all cases, the redistribution and evolution of the configurational forces are studied. Besides the essential findings and methodology achieved in this work, the developed software can serve as a basis for further investigations on the failure of composite smart structures and explicit crack modeling using fracture mechanical concepts.</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-022-03265-9</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Actuators ; Analysis ; Ceramic materials ; Ceramics ; Classical and Continuum Physics ; Computation ; Continuum mechanics ; Control ; Defects ; Dissimilar materials ; Dynamical Systems ; Electric fields ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Evolution ; Ferroelectric materials ; Ferroelectricity ; Finite element method ; Heat and Mass Transfer ; Inclusions ; Inhomogeneity ; Mathematical models ; Microelectromechanical systems ; Original Paper ; Piezoelectricity ; Polarization ; Simulation methods ; Smart structures ; Solid Mechanics ; Switching ; Theoretical and Applied Mechanics ; Thermodynamics ; Three dimensional analysis ; Vibration</subject><ispartof>Acta mechanica, 2023, Vol.234 (1), p.17-36</ispartof><rights>The Author(s) 2022</rights><rights>COPYRIGHT 2023 Springer</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-550015ec074e9dd7dbe7cd1e25a803af63923dffa7431ff0cd49d3ede8146cbe3</citedby><cites>FETCH-LOGICAL-c332t-550015ec074e9dd7dbe7cd1e25a803af63923dffa7431ff0cd49d3ede8146cbe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00707-022-03265-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00707-022-03265-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,27906,27907,41470,42539,51301</link.rule.ids></links><search><creatorcontrib>Kozinov, Sergey</creatorcontrib><creatorcontrib>Kuna, Meinhard</creatorcontrib><title>Configurational forces in ferroelectric structures analyzed by a macromechanical switching model</title><title>Acta mechanica</title><addtitle>Acta Mech</addtitle><description>Polycrystalline ferroelectric ceramics are widely used in sensors, actuators, microelectromechanical systems, etc. If a ferroelectric structure possesses some defects like voids or inhomogeneities, its reliability is reduced, and undesired non-homogeneous local concentrations of the electromechanical fields occur. Under the applied external loading, a domain switching region evolves in the vicinity of defects, which is manifested as a reorientation of the remanent polarization vector. In the current work, the nonlinear electromechanical behavior of ferroelectric ceramics is computed by means of three-dimensional finite element analysis, using the phenomenological continuum mechanics model suggested by Landis (J. Mech. Phys. Solids 50(1):127–152, 2002. https://doi.org/10.1016/s0022-5096(01)00021-7 ) and numerically implemented by Stark (Int. J. Solids Struct. 80:359–367, 2015. https://doi.org/10.1016/j.ijsolstr.2015.09.004 ). This constitutive law is combined with user-developed elements in Abaqus  commercial code for nonlinear coupled electromechanical analyses. By use of the numerical simulations, the evolution of all field variables, in particular of the polarization, is tracked. In a post-processing step, the configurational forces are computed, which express the thermodynamic driving forces acting on the defect. As a typical defect, we consider a circular void in the ferroelectric structure exposed to an alternating electric field. Additionally to the void, other inhomogeneities, namely, a strip of dissimilar material as well as dielectric and piezoelectric inclusions, are investigated. For all cases, the redistribution and evolution of the configurational forces are studied. Besides the essential findings and methodology achieved in this work, the developed software can serve as a basis for further investigations on the failure of composite smart structures and explicit crack modeling using fracture mechanical concepts.</description><subject>Actuators</subject><subject>Analysis</subject><subject>Ceramic materials</subject><subject>Ceramics</subject><subject>Classical and Continuum Physics</subject><subject>Computation</subject><subject>Continuum mechanics</subject><subject>Control</subject><subject>Defects</subject><subject>Dissimilar materials</subject><subject>Dynamical Systems</subject><subject>Electric fields</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Evolution</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Finite element method</subject><subject>Heat and Mass Transfer</subject><subject>Inclusions</subject><subject>Inhomogeneity</subject><subject>Mathematical models</subject><subject>Microelectromechanical systems</subject><subject>Original Paper</subject><subject>Piezoelectricity</subject><subject>Polarization</subject><subject>Simulation methods</subject><subject>Smart structures</subject><subject>Solid Mechanics</subject><subject>Switching</subject><subject>Theoretical and Applied Mechanics</subject><subject>Thermodynamics</subject><subject>Three dimensional analysis</subject><subject>Vibration</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wNWA69Q8ZiaTZSm-oOBG1zFNbtqUmUlNZpD6642O4E4CN9yb811ODkLXlCwoIeI25UIEJoxhwlldYXmCZrSmEteSi1M0I4RQXElBztFFSvvcMVHSGXpbhd757Rj14EOv28KFaCAVvi8cxBigBTNEb4o0xNEMY8xvOuuOn2CLzbHQRadNDB2Yne69yQvShx_MzvfbogsW2kt05nSb4Or3nqPX-7uX1SNePz88rZZrbDhnA66qbKkCQ0QJ0lphNyCMpcAq3RCuXc0l49Y5LUpOnSPGltJysNDQsjYb4HN0M-09xPA-QhrUPowxO02KCUGpEFI0WbWYVFvdgvK9C0PUJh8LnTehB-fzfCl4VVaNbGgG2ATkT6YUwalD9J2OR0WJ-o5eTdGrHL36iV7JDPEJSlncbyH-efmH-gIO44jf</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Kozinov, Sergey</creator><creator>Kuna, Meinhard</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>2023</creationdate><title>Configurational forces in ferroelectric structures analyzed by a macromechanical switching model</title><author>Kozinov, Sergey ; Kuna, Meinhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-550015ec074e9dd7dbe7cd1e25a803af63923dffa7431ff0cd49d3ede8146cbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actuators</topic><topic>Analysis</topic><topic>Ceramic materials</topic><topic>Ceramics</topic><topic>Classical and Continuum Physics</topic><topic>Computation</topic><topic>Continuum mechanics</topic><topic>Control</topic><topic>Defects</topic><topic>Dissimilar materials</topic><topic>Dynamical Systems</topic><topic>Electric fields</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Evolution</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Finite element method</topic><topic>Heat and Mass Transfer</topic><topic>Inclusions</topic><topic>Inhomogeneity</topic><topic>Mathematical models</topic><topic>Microelectromechanical systems</topic><topic>Original Paper</topic><topic>Piezoelectricity</topic><topic>Polarization</topic><topic>Simulation methods</topic><topic>Smart structures</topic><topic>Solid Mechanics</topic><topic>Switching</topic><topic>Theoretical and Applied Mechanics</topic><topic>Thermodynamics</topic><topic>Three dimensional analysis</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kozinov, Sergey</creatorcontrib><creatorcontrib>Kuna, Meinhard</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kozinov, Sergey</au><au>Kuna, Meinhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Configurational forces in ferroelectric structures analyzed by a macromechanical switching model</atitle><jtitle>Acta mechanica</jtitle><stitle>Acta Mech</stitle><date>2023</date><risdate>2023</risdate><volume>234</volume><issue>1</issue><spage>17</spage><epage>36</epage><pages>17-36</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><abstract>Polycrystalline ferroelectric ceramics are widely used in sensors, actuators, microelectromechanical systems, etc. If a ferroelectric structure possesses some defects like voids or inhomogeneities, its reliability is reduced, and undesired non-homogeneous local concentrations of the electromechanical fields occur. Under the applied external loading, a domain switching region evolves in the vicinity of defects, which is manifested as a reorientation of the remanent polarization vector. In the current work, the nonlinear electromechanical behavior of ferroelectric ceramics is computed by means of three-dimensional finite element analysis, using the phenomenological continuum mechanics model suggested by Landis (J. Mech. Phys. Solids 50(1):127–152, 2002. https://doi.org/10.1016/s0022-5096(01)00021-7 ) and numerically implemented by Stark (Int. J. Solids Struct. 80:359–367, 2015. https://doi.org/10.1016/j.ijsolstr.2015.09.004 ). This constitutive law is combined with user-developed elements in Abaqus  commercial code for nonlinear coupled electromechanical analyses. By use of the numerical simulations, the evolution of all field variables, in particular of the polarization, is tracked. In a post-processing step, the configurational forces are computed, which express the thermodynamic driving forces acting on the defect. As a typical defect, we consider a circular void in the ferroelectric structure exposed to an alternating electric field. Additionally to the void, other inhomogeneities, namely, a strip of dissimilar material as well as dielectric and piezoelectric inclusions, are investigated. For all cases, the redistribution and evolution of the configurational forces are studied. Besides the essential findings and methodology achieved in this work, the developed software can serve as a basis for further investigations on the failure of composite smart structures and explicit crack modeling using fracture mechanical concepts.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00707-022-03265-9</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-5970
ispartof Acta mechanica, 2023, Vol.234 (1), p.17-36
issn 0001-5970
1619-6937
language eng
recordid cdi_proquest_journals_2771177978
source SpringerLink Journals - AutoHoldings
subjects Actuators
Analysis
Ceramic materials
Ceramics
Classical and Continuum Physics
Computation
Continuum mechanics
Control
Defects
Dissimilar materials
Dynamical Systems
Electric fields
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Evolution
Ferroelectric materials
Ferroelectricity
Finite element method
Heat and Mass Transfer
Inclusions
Inhomogeneity
Mathematical models
Microelectromechanical systems
Original Paper
Piezoelectricity
Polarization
Simulation methods
Smart structures
Solid Mechanics
Switching
Theoretical and Applied Mechanics
Thermodynamics
Three dimensional analysis
Vibration
title Configurational forces in ferroelectric structures analyzed by a macromechanical switching model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A36%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Configurational%20forces%20in%20ferroelectric%20structures%20analyzed%20by%20a%20macromechanical%20switching%20model&rft.jtitle=Acta%20mechanica&rft.au=Kozinov,%20Sergey&rft.date=2023&rft.volume=234&rft.issue=1&rft.spage=17&rft.epage=36&rft.pages=17-36&rft.issn=0001-5970&rft.eissn=1619-6937&rft_id=info:doi/10.1007/s00707-022-03265-9&rft_dat=%3Cgale_proqu%3EA735458981%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2771177978&rft_id=info:pmid/&rft_galeid=A735458981&rfr_iscdi=true