Configurational forces in ferroelectric structures analyzed by a macromechanical switching model
Polycrystalline ferroelectric ceramics are widely used in sensors, actuators, microelectromechanical systems, etc. If a ferroelectric structure possesses some defects like voids or inhomogeneities, its reliability is reduced, and undesired non-homogeneous local concentrations of the electromechanica...
Gespeichert in:
Veröffentlicht in: | Acta mechanica 2023, Vol.234 (1), p.17-36 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 36 |
---|---|
container_issue | 1 |
container_start_page | 17 |
container_title | Acta mechanica |
container_volume | 234 |
creator | Kozinov, Sergey Kuna, Meinhard |
description | Polycrystalline ferroelectric ceramics are widely used in sensors, actuators, microelectromechanical systems, etc. If a ferroelectric structure possesses some defects like voids or inhomogeneities, its reliability is reduced, and undesired non-homogeneous local concentrations of the electromechanical fields occur. Under the applied external loading, a domain switching region evolves in the vicinity of defects, which is manifested as a reorientation of the remanent polarization vector. In the current work, the nonlinear electromechanical behavior of ferroelectric ceramics is computed by means of three-dimensional finite element analysis, using the phenomenological continuum mechanics model suggested by Landis (J. Mech. Phys. Solids 50(1):127–152, 2002.
https://doi.org/10.1016/s0022-5096(01)00021-7
) and numerically implemented by Stark (Int. J. Solids Struct. 80:359–367, 2015.
https://doi.org/10.1016/j.ijsolstr.2015.09.004
). This constitutive law is combined with user-developed elements in
Abaqus
commercial code for nonlinear coupled electromechanical analyses. By use of the numerical simulations, the evolution of all field variables, in particular of the polarization, is tracked. In a post-processing step, the configurational forces are computed, which express the thermodynamic driving forces acting on the defect. As a typical defect, we consider a circular void in the ferroelectric structure exposed to an alternating electric field. Additionally to the void, other inhomogeneities, namely, a strip of dissimilar material as well as dielectric and piezoelectric inclusions, are investigated. For all cases, the redistribution and evolution of the configurational forces are studied. Besides the essential findings and methodology achieved in this work, the developed software can serve as a basis for further investigations on the failure of composite smart structures and explicit crack modeling using fracture mechanical concepts. |
doi_str_mv | 10.1007/s00707-022-03265-9 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2771177978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A735458981</galeid><sourcerecordid>A735458981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-550015ec074e9dd7dbe7cd1e25a803af63923dffa7431ff0cd49d3ede8146cbe3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wNWA69Q8ZiaTZSm-oOBG1zFNbtqUmUlNZpD6642O4E4CN9yb811ODkLXlCwoIeI25UIEJoxhwlldYXmCZrSmEteSi1M0I4RQXElBztFFSvvcMVHSGXpbhd757Rj14EOv28KFaCAVvi8cxBigBTNEb4o0xNEMY8xvOuuOn2CLzbHQRadNDB2Yne69yQvShx_MzvfbogsW2kt05nSb4Or3nqPX-7uX1SNePz88rZZrbDhnA66qbKkCQ0QJ0lphNyCMpcAq3RCuXc0l49Y5LUpOnSPGltJysNDQsjYb4HN0M-09xPA-QhrUPowxO02KCUGpEFI0WbWYVFvdgvK9C0PUJh8LnTehB-fzfCl4VVaNbGgG2ATkT6YUwalD9J2OR0WJ-o5eTdGrHL36iV7JDPEJSlncbyH-efmH-gIO44jf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771177978</pqid></control><display><type>article</type><title>Configurational forces in ferroelectric structures analyzed by a macromechanical switching model</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kozinov, Sergey ; Kuna, Meinhard</creator><creatorcontrib>Kozinov, Sergey ; Kuna, Meinhard</creatorcontrib><description>Polycrystalline ferroelectric ceramics are widely used in sensors, actuators, microelectromechanical systems, etc. If a ferroelectric structure possesses some defects like voids or inhomogeneities, its reliability is reduced, and undesired non-homogeneous local concentrations of the electromechanical fields occur. Under the applied external loading, a domain switching region evolves in the vicinity of defects, which is manifested as a reorientation of the remanent polarization vector. In the current work, the nonlinear electromechanical behavior of ferroelectric ceramics is computed by means of three-dimensional finite element analysis, using the phenomenological continuum mechanics model suggested by Landis (J. Mech. Phys. Solids 50(1):127–152, 2002.
https://doi.org/10.1016/s0022-5096(01)00021-7
) and numerically implemented by Stark (Int. J. Solids Struct. 80:359–367, 2015.
https://doi.org/10.1016/j.ijsolstr.2015.09.004
). This constitutive law is combined with user-developed elements in
Abaqus
commercial code for nonlinear coupled electromechanical analyses. By use of the numerical simulations, the evolution of all field variables, in particular of the polarization, is tracked. In a post-processing step, the configurational forces are computed, which express the thermodynamic driving forces acting on the defect. As a typical defect, we consider a circular void in the ferroelectric structure exposed to an alternating electric field. Additionally to the void, other inhomogeneities, namely, a strip of dissimilar material as well as dielectric and piezoelectric inclusions, are investigated. For all cases, the redistribution and evolution of the configurational forces are studied. Besides the essential findings and methodology achieved in this work, the developed software can serve as a basis for further investigations on the failure of composite smart structures and explicit crack modeling using fracture mechanical concepts.</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-022-03265-9</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Actuators ; Analysis ; Ceramic materials ; Ceramics ; Classical and Continuum Physics ; Computation ; Continuum mechanics ; Control ; Defects ; Dissimilar materials ; Dynamical Systems ; Electric fields ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Evolution ; Ferroelectric materials ; Ferroelectricity ; Finite element method ; Heat and Mass Transfer ; Inclusions ; Inhomogeneity ; Mathematical models ; Microelectromechanical systems ; Original Paper ; Piezoelectricity ; Polarization ; Simulation methods ; Smart structures ; Solid Mechanics ; Switching ; Theoretical and Applied Mechanics ; Thermodynamics ; Three dimensional analysis ; Vibration</subject><ispartof>Acta mechanica, 2023, Vol.234 (1), p.17-36</ispartof><rights>The Author(s) 2022</rights><rights>COPYRIGHT 2023 Springer</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-550015ec074e9dd7dbe7cd1e25a803af63923dffa7431ff0cd49d3ede8146cbe3</citedby><cites>FETCH-LOGICAL-c332t-550015ec074e9dd7dbe7cd1e25a803af63923dffa7431ff0cd49d3ede8146cbe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00707-022-03265-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00707-022-03265-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,27906,27907,41470,42539,51301</link.rule.ids></links><search><creatorcontrib>Kozinov, Sergey</creatorcontrib><creatorcontrib>Kuna, Meinhard</creatorcontrib><title>Configurational forces in ferroelectric structures analyzed by a macromechanical switching model</title><title>Acta mechanica</title><addtitle>Acta Mech</addtitle><description>Polycrystalline ferroelectric ceramics are widely used in sensors, actuators, microelectromechanical systems, etc. If a ferroelectric structure possesses some defects like voids or inhomogeneities, its reliability is reduced, and undesired non-homogeneous local concentrations of the electromechanical fields occur. Under the applied external loading, a domain switching region evolves in the vicinity of defects, which is manifested as a reorientation of the remanent polarization vector. In the current work, the nonlinear electromechanical behavior of ferroelectric ceramics is computed by means of three-dimensional finite element analysis, using the phenomenological continuum mechanics model suggested by Landis (J. Mech. Phys. Solids 50(1):127–152, 2002.
https://doi.org/10.1016/s0022-5096(01)00021-7
) and numerically implemented by Stark (Int. J. Solids Struct. 80:359–367, 2015.
https://doi.org/10.1016/j.ijsolstr.2015.09.004
). This constitutive law is combined with user-developed elements in
Abaqus
commercial code for nonlinear coupled electromechanical analyses. By use of the numerical simulations, the evolution of all field variables, in particular of the polarization, is tracked. In a post-processing step, the configurational forces are computed, which express the thermodynamic driving forces acting on the defect. As a typical defect, we consider a circular void in the ferroelectric structure exposed to an alternating electric field. Additionally to the void, other inhomogeneities, namely, a strip of dissimilar material as well as dielectric and piezoelectric inclusions, are investigated. For all cases, the redistribution and evolution of the configurational forces are studied. Besides the essential findings and methodology achieved in this work, the developed software can serve as a basis for further investigations on the failure of composite smart structures and explicit crack modeling using fracture mechanical concepts.</description><subject>Actuators</subject><subject>Analysis</subject><subject>Ceramic materials</subject><subject>Ceramics</subject><subject>Classical and Continuum Physics</subject><subject>Computation</subject><subject>Continuum mechanics</subject><subject>Control</subject><subject>Defects</subject><subject>Dissimilar materials</subject><subject>Dynamical Systems</subject><subject>Electric fields</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Evolution</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Finite element method</subject><subject>Heat and Mass Transfer</subject><subject>Inclusions</subject><subject>Inhomogeneity</subject><subject>Mathematical models</subject><subject>Microelectromechanical systems</subject><subject>Original Paper</subject><subject>Piezoelectricity</subject><subject>Polarization</subject><subject>Simulation methods</subject><subject>Smart structures</subject><subject>Solid Mechanics</subject><subject>Switching</subject><subject>Theoretical and Applied Mechanics</subject><subject>Thermodynamics</subject><subject>Three dimensional analysis</subject><subject>Vibration</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wNWA69Q8ZiaTZSm-oOBG1zFNbtqUmUlNZpD6642O4E4CN9yb811ODkLXlCwoIeI25UIEJoxhwlldYXmCZrSmEteSi1M0I4RQXElBztFFSvvcMVHSGXpbhd757Rj14EOv28KFaCAVvi8cxBigBTNEb4o0xNEMY8xvOuuOn2CLzbHQRadNDB2Yne69yQvShx_MzvfbogsW2kt05nSb4Or3nqPX-7uX1SNePz88rZZrbDhnA66qbKkCQ0QJ0lphNyCMpcAq3RCuXc0l49Y5LUpOnSPGltJysNDQsjYb4HN0M-09xPA-QhrUPowxO02KCUGpEFI0WbWYVFvdgvK9C0PUJh8LnTehB-fzfCl4VVaNbGgG2ATkT6YUwalD9J2OR0WJ-o5eTdGrHL36iV7JDPEJSlncbyH-efmH-gIO44jf</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Kozinov, Sergey</creator><creator>Kuna, Meinhard</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>2023</creationdate><title>Configurational forces in ferroelectric structures analyzed by a macromechanical switching model</title><author>Kozinov, Sergey ; Kuna, Meinhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-550015ec074e9dd7dbe7cd1e25a803af63923dffa7431ff0cd49d3ede8146cbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actuators</topic><topic>Analysis</topic><topic>Ceramic materials</topic><topic>Ceramics</topic><topic>Classical and Continuum Physics</topic><topic>Computation</topic><topic>Continuum mechanics</topic><topic>Control</topic><topic>Defects</topic><topic>Dissimilar materials</topic><topic>Dynamical Systems</topic><topic>Electric fields</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Evolution</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Finite element method</topic><topic>Heat and Mass Transfer</topic><topic>Inclusions</topic><topic>Inhomogeneity</topic><topic>Mathematical models</topic><topic>Microelectromechanical systems</topic><topic>Original Paper</topic><topic>Piezoelectricity</topic><topic>Polarization</topic><topic>Simulation methods</topic><topic>Smart structures</topic><topic>Solid Mechanics</topic><topic>Switching</topic><topic>Theoretical and Applied Mechanics</topic><topic>Thermodynamics</topic><topic>Three dimensional analysis</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kozinov, Sergey</creatorcontrib><creatorcontrib>Kuna, Meinhard</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kozinov, Sergey</au><au>Kuna, Meinhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Configurational forces in ferroelectric structures analyzed by a macromechanical switching model</atitle><jtitle>Acta mechanica</jtitle><stitle>Acta Mech</stitle><date>2023</date><risdate>2023</risdate><volume>234</volume><issue>1</issue><spage>17</spage><epage>36</epage><pages>17-36</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><abstract>Polycrystalline ferroelectric ceramics are widely used in sensors, actuators, microelectromechanical systems, etc. If a ferroelectric structure possesses some defects like voids or inhomogeneities, its reliability is reduced, and undesired non-homogeneous local concentrations of the electromechanical fields occur. Under the applied external loading, a domain switching region evolves in the vicinity of defects, which is manifested as a reorientation of the remanent polarization vector. In the current work, the nonlinear electromechanical behavior of ferroelectric ceramics is computed by means of three-dimensional finite element analysis, using the phenomenological continuum mechanics model suggested by Landis (J. Mech. Phys. Solids 50(1):127–152, 2002.
https://doi.org/10.1016/s0022-5096(01)00021-7
) and numerically implemented by Stark (Int. J. Solids Struct. 80:359–367, 2015.
https://doi.org/10.1016/j.ijsolstr.2015.09.004
). This constitutive law is combined with user-developed elements in
Abaqus
commercial code for nonlinear coupled electromechanical analyses. By use of the numerical simulations, the evolution of all field variables, in particular of the polarization, is tracked. In a post-processing step, the configurational forces are computed, which express the thermodynamic driving forces acting on the defect. As a typical defect, we consider a circular void in the ferroelectric structure exposed to an alternating electric field. Additionally to the void, other inhomogeneities, namely, a strip of dissimilar material as well as dielectric and piezoelectric inclusions, are investigated. For all cases, the redistribution and evolution of the configurational forces are studied. Besides the essential findings and methodology achieved in this work, the developed software can serve as a basis for further investigations on the failure of composite smart structures and explicit crack modeling using fracture mechanical concepts.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00707-022-03265-9</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-5970 |
ispartof | Acta mechanica, 2023, Vol.234 (1), p.17-36 |
issn | 0001-5970 1619-6937 |
language | eng |
recordid | cdi_proquest_journals_2771177978 |
source | SpringerLink Journals - AutoHoldings |
subjects | Actuators Analysis Ceramic materials Ceramics Classical and Continuum Physics Computation Continuum mechanics Control Defects Dissimilar materials Dynamical Systems Electric fields Engineering Engineering Fluid Dynamics Engineering Thermodynamics Evolution Ferroelectric materials Ferroelectricity Finite element method Heat and Mass Transfer Inclusions Inhomogeneity Mathematical models Microelectromechanical systems Original Paper Piezoelectricity Polarization Simulation methods Smart structures Solid Mechanics Switching Theoretical and Applied Mechanics Thermodynamics Three dimensional analysis Vibration |
title | Configurational forces in ferroelectric structures analyzed by a macromechanical switching model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A36%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Configurational%20forces%20in%20ferroelectric%20structures%20analyzed%20by%20a%20macromechanical%20switching%20model&rft.jtitle=Acta%20mechanica&rft.au=Kozinov,%20Sergey&rft.date=2023&rft.volume=234&rft.issue=1&rft.spage=17&rft.epage=36&rft.pages=17-36&rft.issn=0001-5970&rft.eissn=1619-6937&rft_id=info:doi/10.1007/s00707-022-03265-9&rft_dat=%3Cgale_proqu%3EA735458981%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2771177978&rft_id=info:pmid/&rft_galeid=A735458981&rfr_iscdi=true |