Adaptive Fixed-time Output Feedback Tracking Control for Uncertain Nonlinear Systems
This article studies the fixed-time output feedback tracking control based on the command filtered backstepping method for nonlinear systems. The approximation technique of neural network is used to estimate uncertain dynamics. The fixed-time filter is introduced to overcome the problem of complexit...
Gespeichert in:
Veröffentlicht in: | International journal of control, automation, and systems automation, and systems, 2023-02, Vol.21 (2), p.429-439 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 439 |
---|---|
container_issue | 2 |
container_start_page | 429 |
container_title | International journal of control, automation, and systems |
container_volume | 21 |
creator | Hou, Shuchao Zhao, Lin |
description | This article studies the fixed-time output feedback tracking control based on the command filtered backstepping method for nonlinear systems. The approximation technique of neural network is used to estimate uncertain dynamics. The fixed-time filter is introduced to overcome the problem of complexity explosion, and combined with the compensation signal to reduce the filtering error. It is worth noting that the convergence time of fixed-time control is predetermined, and there is no need to know the information of the system initial value. The final results show that the tracking error reach to the expected neighborhood near the origin in fixed-time. Eventually, the effectiveness of the proposed fixed-time control strategy is demonstrated by a simulation case. |
doi_str_mv | 10.1007/s12555-021-0999-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2771069734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2771069734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-13cd54cc05c503f33ab75cf5669c7e2528d1b613ce43bc11028d9f2e64d39a543</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAczQfm6Q5lmJVEHuwPYdsdrZsbbNrkhX7792ygicvMzA87zvwIHTL6D2jVD8kxqWUhHJGqDGG6DM04ZRKUlDDz9GESTMjqijUJbpKaUepUtzoCVrPK9fl5gvwsvmGiuTmAHjV567PeAlQlc5_4HUcZhO2eNGGHNs9rtuIN8FDzK4J-K0N-yaAi_j9mDIc0jW6qN0-wc3vnqLN8nG9eCavq6eXxfyVeMFUJkz4ShbeU-klFbUQrtTS11Ip4zVwyWcVK9VAQSFKzxgdDqbmoIpKGCcLMUV3Y28X288eUra7to9heGm51owqo8WJYiPlY5tShNp2sTm4eLSM2pM8O8qzgzx7kmf1kOFjJg1s2EL8a_4_9APGj3Gg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771069734</pqid></control><display><type>article</type><title>Adaptive Fixed-time Output Feedback Tracking Control for Uncertain Nonlinear Systems</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hou, Shuchao ; Zhao, Lin</creator><creatorcontrib>Hou, Shuchao ; Zhao, Lin</creatorcontrib><description>This article studies the fixed-time output feedback tracking control based on the command filtered backstepping method for nonlinear systems. The approximation technique of neural network is used to estimate uncertain dynamics. The fixed-time filter is introduced to overcome the problem of complexity explosion, and combined with the compensation signal to reduce the filtering error. It is worth noting that the convergence time of fixed-time control is predetermined, and there is no need to know the information of the system initial value. The final results show that the tracking error reach to the expected neighborhood near the origin in fixed-time. Eventually, the effectiveness of the proposed fixed-time control strategy is demonstrated by a simulation case.</description><identifier>ISSN: 1598-6446</identifier><identifier>EISSN: 2005-4092</identifier><identifier>DOI: 10.1007/s12555-021-0999-7</identifier><language>eng</language><publisher>Bucheon / Seoul: Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers</publisher><subject>Adaptive control ; Control ; Engineering ; Mechatronics ; Neural networks ; Nonlinear control ; Nonlinear systems ; Output feedback ; Regular Papers ; Robotics ; Tracking control ; Tracking errors</subject><ispartof>International journal of control, automation, and systems, 2023-02, Vol.21 (2), p.429-439</ispartof><rights>ICROS, KIEE and Springer 2023</rights><rights>ICROS, KIEE and Springer 2023.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-13cd54cc05c503f33ab75cf5669c7e2528d1b613ce43bc11028d9f2e64d39a543</citedby><cites>FETCH-LOGICAL-c316t-13cd54cc05c503f33ab75cf5669c7e2528d1b613ce43bc11028d9f2e64d39a543</cites><orcidid>0000-0003-2111-6611</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12555-021-0999-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12555-021-0999-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Hou, Shuchao</creatorcontrib><creatorcontrib>Zhao, Lin</creatorcontrib><title>Adaptive Fixed-time Output Feedback Tracking Control for Uncertain Nonlinear Systems</title><title>International journal of control, automation, and systems</title><addtitle>Int. J. Control Autom. Syst</addtitle><description>This article studies the fixed-time output feedback tracking control based on the command filtered backstepping method for nonlinear systems. The approximation technique of neural network is used to estimate uncertain dynamics. The fixed-time filter is introduced to overcome the problem of complexity explosion, and combined with the compensation signal to reduce the filtering error. It is worth noting that the convergence time of fixed-time control is predetermined, and there is no need to know the information of the system initial value. The final results show that the tracking error reach to the expected neighborhood near the origin in fixed-time. Eventually, the effectiveness of the proposed fixed-time control strategy is demonstrated by a simulation case.</description><subject>Adaptive control</subject><subject>Control</subject><subject>Engineering</subject><subject>Mechatronics</subject><subject>Neural networks</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>Output feedback</subject><subject>Regular Papers</subject><subject>Robotics</subject><subject>Tracking control</subject><subject>Tracking errors</subject><issn>1598-6446</issn><issn>2005-4092</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvAczQfm6Q5lmJVEHuwPYdsdrZsbbNrkhX7792ygicvMzA87zvwIHTL6D2jVD8kxqWUhHJGqDGG6DM04ZRKUlDDz9GESTMjqijUJbpKaUepUtzoCVrPK9fl5gvwsvmGiuTmAHjV567PeAlQlc5_4HUcZhO2eNGGHNs9rtuIN8FDzK4J-K0N-yaAi_j9mDIc0jW6qN0-wc3vnqLN8nG9eCavq6eXxfyVeMFUJkz4ShbeU-klFbUQrtTS11Ip4zVwyWcVK9VAQSFKzxgdDqbmoIpKGCcLMUV3Y28X288eUra7to9heGm51owqo8WJYiPlY5tShNp2sTm4eLSM2pM8O8qzgzx7kmf1kOFjJg1s2EL8a_4_9APGj3Gg</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Hou, Shuchao</creator><creator>Zhao, Lin</creator><general>Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2111-6611</orcidid></search><sort><creationdate>20230201</creationdate><title>Adaptive Fixed-time Output Feedback Tracking Control for Uncertain Nonlinear Systems</title><author>Hou, Shuchao ; Zhao, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-13cd54cc05c503f33ab75cf5669c7e2528d1b613ce43bc11028d9f2e64d39a543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive control</topic><topic>Control</topic><topic>Engineering</topic><topic>Mechatronics</topic><topic>Neural networks</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>Output feedback</topic><topic>Regular Papers</topic><topic>Robotics</topic><topic>Tracking control</topic><topic>Tracking errors</topic><toplevel>online_resources</toplevel><creatorcontrib>Hou, Shuchao</creatorcontrib><creatorcontrib>Zhao, Lin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of control, automation, and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Shuchao</au><au>Zhao, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Fixed-time Output Feedback Tracking Control for Uncertain Nonlinear Systems</atitle><jtitle>International journal of control, automation, and systems</jtitle><stitle>Int. J. Control Autom. Syst</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>21</volume><issue>2</issue><spage>429</spage><epage>439</epage><pages>429-439</pages><issn>1598-6446</issn><eissn>2005-4092</eissn><abstract>This article studies the fixed-time output feedback tracking control based on the command filtered backstepping method for nonlinear systems. The approximation technique of neural network is used to estimate uncertain dynamics. The fixed-time filter is introduced to overcome the problem of complexity explosion, and combined with the compensation signal to reduce the filtering error. It is worth noting that the convergence time of fixed-time control is predetermined, and there is no need to know the information of the system initial value. The final results show that the tracking error reach to the expected neighborhood near the origin in fixed-time. Eventually, the effectiveness of the proposed fixed-time control strategy is demonstrated by a simulation case.</abstract><cop>Bucheon / Seoul</cop><pub>Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers</pub><doi>10.1007/s12555-021-0999-7</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2111-6611</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1598-6446 |
ispartof | International journal of control, automation, and systems, 2023-02, Vol.21 (2), p.429-439 |
issn | 1598-6446 2005-4092 |
language | eng |
recordid | cdi_proquest_journals_2771069734 |
source | SpringerLink Journals - AutoHoldings |
subjects | Adaptive control Control Engineering Mechatronics Neural networks Nonlinear control Nonlinear systems Output feedback Regular Papers Robotics Tracking control Tracking errors |
title | Adaptive Fixed-time Output Feedback Tracking Control for Uncertain Nonlinear Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A57%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Fixed-time%20Output%20Feedback%20Tracking%20Control%20for%20Uncertain%20Nonlinear%20Systems&rft.jtitle=International%20journal%20of%20control,%20automation,%20and%20systems&rft.au=Hou,%20Shuchao&rft.date=2023-02-01&rft.volume=21&rft.issue=2&rft.spage=429&rft.epage=439&rft.pages=429-439&rft.issn=1598-6446&rft.eissn=2005-4092&rft_id=info:doi/10.1007/s12555-021-0999-7&rft_dat=%3Cproquest_cross%3E2771069734%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2771069734&rft_id=info:pmid/&rfr_iscdi=true |