Adaptive Fixed-time Output Feedback Tracking Control for Uncertain Nonlinear Systems

This article studies the fixed-time output feedback tracking control based on the command filtered backstepping method for nonlinear systems. The approximation technique of neural network is used to estimate uncertain dynamics. The fixed-time filter is introduced to overcome the problem of complexit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of control, automation, and systems automation, and systems, 2023-02, Vol.21 (2), p.429-439
Hauptverfasser: Hou, Shuchao, Zhao, Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 439
container_issue 2
container_start_page 429
container_title International journal of control, automation, and systems
container_volume 21
creator Hou, Shuchao
Zhao, Lin
description This article studies the fixed-time output feedback tracking control based on the command filtered backstepping method for nonlinear systems. The approximation technique of neural network is used to estimate uncertain dynamics. The fixed-time filter is introduced to overcome the problem of complexity explosion, and combined with the compensation signal to reduce the filtering error. It is worth noting that the convergence time of fixed-time control is predetermined, and there is no need to know the information of the system initial value. The final results show that the tracking error reach to the expected neighborhood near the origin in fixed-time. Eventually, the effectiveness of the proposed fixed-time control strategy is demonstrated by a simulation case.
doi_str_mv 10.1007/s12555-021-0999-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2771069734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2771069734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-13cd54cc05c503f33ab75cf5669c7e2528d1b613ce43bc11028d9f2e64d39a543</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAczQfm6Q5lmJVEHuwPYdsdrZsbbNrkhX7792ygicvMzA87zvwIHTL6D2jVD8kxqWUhHJGqDGG6DM04ZRKUlDDz9GESTMjqijUJbpKaUepUtzoCVrPK9fl5gvwsvmGiuTmAHjV567PeAlQlc5_4HUcZhO2eNGGHNs9rtuIN8FDzK4J-K0N-yaAi_j9mDIc0jW6qN0-wc3vnqLN8nG9eCavq6eXxfyVeMFUJkz4ShbeU-klFbUQrtTS11Ip4zVwyWcVK9VAQSFKzxgdDqbmoIpKGCcLMUV3Y28X288eUra7to9heGm51owqo8WJYiPlY5tShNp2sTm4eLSM2pM8O8qzgzx7kmf1kOFjJg1s2EL8a_4_9APGj3Gg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771069734</pqid></control><display><type>article</type><title>Adaptive Fixed-time Output Feedback Tracking Control for Uncertain Nonlinear Systems</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hou, Shuchao ; Zhao, Lin</creator><creatorcontrib>Hou, Shuchao ; Zhao, Lin</creatorcontrib><description>This article studies the fixed-time output feedback tracking control based on the command filtered backstepping method for nonlinear systems. The approximation technique of neural network is used to estimate uncertain dynamics. The fixed-time filter is introduced to overcome the problem of complexity explosion, and combined with the compensation signal to reduce the filtering error. It is worth noting that the convergence time of fixed-time control is predetermined, and there is no need to know the information of the system initial value. The final results show that the tracking error reach to the expected neighborhood near the origin in fixed-time. Eventually, the effectiveness of the proposed fixed-time control strategy is demonstrated by a simulation case.</description><identifier>ISSN: 1598-6446</identifier><identifier>EISSN: 2005-4092</identifier><identifier>DOI: 10.1007/s12555-021-0999-7</identifier><language>eng</language><publisher>Bucheon / Seoul: Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers</publisher><subject>Adaptive control ; Control ; Engineering ; Mechatronics ; Neural networks ; Nonlinear control ; Nonlinear systems ; Output feedback ; Regular Papers ; Robotics ; Tracking control ; Tracking errors</subject><ispartof>International journal of control, automation, and systems, 2023-02, Vol.21 (2), p.429-439</ispartof><rights>ICROS, KIEE and Springer 2023</rights><rights>ICROS, KIEE and Springer 2023.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-13cd54cc05c503f33ab75cf5669c7e2528d1b613ce43bc11028d9f2e64d39a543</citedby><cites>FETCH-LOGICAL-c316t-13cd54cc05c503f33ab75cf5669c7e2528d1b613ce43bc11028d9f2e64d39a543</cites><orcidid>0000-0003-2111-6611</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12555-021-0999-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12555-021-0999-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Hou, Shuchao</creatorcontrib><creatorcontrib>Zhao, Lin</creatorcontrib><title>Adaptive Fixed-time Output Feedback Tracking Control for Uncertain Nonlinear Systems</title><title>International journal of control, automation, and systems</title><addtitle>Int. J. Control Autom. Syst</addtitle><description>This article studies the fixed-time output feedback tracking control based on the command filtered backstepping method for nonlinear systems. The approximation technique of neural network is used to estimate uncertain dynamics. The fixed-time filter is introduced to overcome the problem of complexity explosion, and combined with the compensation signal to reduce the filtering error. It is worth noting that the convergence time of fixed-time control is predetermined, and there is no need to know the information of the system initial value. The final results show that the tracking error reach to the expected neighborhood near the origin in fixed-time. Eventually, the effectiveness of the proposed fixed-time control strategy is demonstrated by a simulation case.</description><subject>Adaptive control</subject><subject>Control</subject><subject>Engineering</subject><subject>Mechatronics</subject><subject>Neural networks</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>Output feedback</subject><subject>Regular Papers</subject><subject>Robotics</subject><subject>Tracking control</subject><subject>Tracking errors</subject><issn>1598-6446</issn><issn>2005-4092</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvAczQfm6Q5lmJVEHuwPYdsdrZsbbNrkhX7792ygicvMzA87zvwIHTL6D2jVD8kxqWUhHJGqDGG6DM04ZRKUlDDz9GESTMjqijUJbpKaUepUtzoCVrPK9fl5gvwsvmGiuTmAHjV567PeAlQlc5_4HUcZhO2eNGGHNs9rtuIN8FDzK4J-K0N-yaAi_j9mDIc0jW6qN0-wc3vnqLN8nG9eCavq6eXxfyVeMFUJkz4ShbeU-klFbUQrtTS11Ip4zVwyWcVK9VAQSFKzxgdDqbmoIpKGCcLMUV3Y28X288eUra7to9heGm51owqo8WJYiPlY5tShNp2sTm4eLSM2pM8O8qzgzx7kmf1kOFjJg1s2EL8a_4_9APGj3Gg</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Hou, Shuchao</creator><creator>Zhao, Lin</creator><general>Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2111-6611</orcidid></search><sort><creationdate>20230201</creationdate><title>Adaptive Fixed-time Output Feedback Tracking Control for Uncertain Nonlinear Systems</title><author>Hou, Shuchao ; Zhao, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-13cd54cc05c503f33ab75cf5669c7e2528d1b613ce43bc11028d9f2e64d39a543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive control</topic><topic>Control</topic><topic>Engineering</topic><topic>Mechatronics</topic><topic>Neural networks</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>Output feedback</topic><topic>Regular Papers</topic><topic>Robotics</topic><topic>Tracking control</topic><topic>Tracking errors</topic><toplevel>online_resources</toplevel><creatorcontrib>Hou, Shuchao</creatorcontrib><creatorcontrib>Zhao, Lin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of control, automation, and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Shuchao</au><au>Zhao, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Fixed-time Output Feedback Tracking Control for Uncertain Nonlinear Systems</atitle><jtitle>International journal of control, automation, and systems</jtitle><stitle>Int. J. Control Autom. Syst</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>21</volume><issue>2</issue><spage>429</spage><epage>439</epage><pages>429-439</pages><issn>1598-6446</issn><eissn>2005-4092</eissn><abstract>This article studies the fixed-time output feedback tracking control based on the command filtered backstepping method for nonlinear systems. The approximation technique of neural network is used to estimate uncertain dynamics. The fixed-time filter is introduced to overcome the problem of complexity explosion, and combined with the compensation signal to reduce the filtering error. It is worth noting that the convergence time of fixed-time control is predetermined, and there is no need to know the information of the system initial value. The final results show that the tracking error reach to the expected neighborhood near the origin in fixed-time. Eventually, the effectiveness of the proposed fixed-time control strategy is demonstrated by a simulation case.</abstract><cop>Bucheon / Seoul</cop><pub>Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers</pub><doi>10.1007/s12555-021-0999-7</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2111-6611</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1598-6446
ispartof International journal of control, automation, and systems, 2023-02, Vol.21 (2), p.429-439
issn 1598-6446
2005-4092
language eng
recordid cdi_proquest_journals_2771069734
source SpringerLink Journals - AutoHoldings
subjects Adaptive control
Control
Engineering
Mechatronics
Neural networks
Nonlinear control
Nonlinear systems
Output feedback
Regular Papers
Robotics
Tracking control
Tracking errors
title Adaptive Fixed-time Output Feedback Tracking Control for Uncertain Nonlinear Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A57%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Fixed-time%20Output%20Feedback%20Tracking%20Control%20for%20Uncertain%20Nonlinear%20Systems&rft.jtitle=International%20journal%20of%20control,%20automation,%20and%20systems&rft.au=Hou,%20Shuchao&rft.date=2023-02-01&rft.volume=21&rft.issue=2&rft.spage=429&rft.epage=439&rft.pages=429-439&rft.issn=1598-6446&rft.eissn=2005-4092&rft_id=info:doi/10.1007/s12555-021-0999-7&rft_dat=%3Cproquest_cross%3E2771069734%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2771069734&rft_id=info:pmid/&rfr_iscdi=true