Collaborative optimization with PSO for named entity recognition-based applications
Named entity recognition (NER) as a crucial technology is widely used in many application scenarios, including information extraction, information retrieval, text summarization, and machine translation assisted in AI-based smart communication and networking systems. As people pay more and more atten...
Gespeichert in:
Veröffentlicht in: | Intelligent data analysis 2023-01, Vol.27 (1), p.103-120 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 120 |
---|---|
container_issue | 1 |
container_start_page | 103 |
container_title | Intelligent data analysis |
container_volume | 27 |
creator | Peng, Qiaojuan Luo, Xiong Shen, Hailun Huang, Ziyang Chen, Maojian |
description | Named entity recognition (NER) as a crucial technology is widely used in many application scenarios, including information extraction, information retrieval, text summarization, and machine translation assisted in AI-based smart communication and networking systems. As people pay more and more attention to NER, it has gradually become an independent and important research field. Currently, most of the NER models need to manually adjust their hyper-parameters, which is not only time-consuming and laborious, but also easy to fall into a local optimal situation. To deal with such problem, this paper proposes a machine learning-guided model to achieve NER, where the hyper-parameters of model are automatically adjusted to improve the computational performance. Specifically, the proposed model is implemented by using bi-directional encoder representation from transformers (BERT) and conditional random field (CRF). Meanwhile, the collaborative computing paradigm is also fused in the model, while utilizing the particle swarm optimization (PSO) to automatically search for the best value of hyper-parameters in a collaborative way. The experimental results demonstrate the satisfactory performance of our proposed model. |
doi_str_mv | 10.3233/IDA-216483 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2771065557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2771065557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-5944c6d250107550297217e8d36555a8966c5f24c758e208a2daca07028ec91d3</originalsourceid><addsrcrecordid>eNotkE1LAzEQhoMoWKsXf0HAm7A6-dpkj6V-FQoVquAtpNmspmw3a5Iq9de7tZ5mhnnmHXgQuiRwwyhjt7O7SUFJyRU7QiMiJCk4oep46EGpgpfy7RSdpbQGAE6Bj9ByGtrWrEI02X85HPrsN_5nGEKHv33-wM_LBW5CxJ3ZuBq7Lvu8w9HZ8N75PVWsTBoWpu9bb__u0jk6aUyb3MV_HaPXh_uX6VMxXzzOppN5YQlXuRAV57asqQACUgiglaREOlWzUghhVFWWVjSUWymUo6AMrY01IIEqZytSszG6OuT2MXxuXcp6HbaxG15qKiWBfYwcqOsDZWNIKbpG99FvTNxpAnovTQ_S9EEa-wUix14s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771065557</pqid></control><display><type>article</type><title>Collaborative optimization with PSO for named entity recognition-based applications</title><source>Business Source Complete</source><creator>Peng, Qiaojuan ; Luo, Xiong ; Shen, Hailun ; Huang, Ziyang ; Chen, Maojian</creator><creatorcontrib>Peng, Qiaojuan ; Luo, Xiong ; Shen, Hailun ; Huang, Ziyang ; Chen, Maojian</creatorcontrib><description>Named entity recognition (NER) as a crucial technology is widely used in many application scenarios, including information extraction, information retrieval, text summarization, and machine translation assisted in AI-based smart communication and networking systems. As people pay more and more attention to NER, it has gradually become an independent and important research field. Currently, most of the NER models need to manually adjust their hyper-parameters, which is not only time-consuming and laborious, but also easy to fall into a local optimal situation. To deal with such problem, this paper proposes a machine learning-guided model to achieve NER, where the hyper-parameters of model are automatically adjusted to improve the computational performance. Specifically, the proposed model is implemented by using bi-directional encoder representation from transformers (BERT) and conditional random field (CRF). Meanwhile, the collaborative computing paradigm is also fused in the model, while utilizing the particle swarm optimization (PSO) to automatically search for the best value of hyper-parameters in a collaborative way. The experimental results demonstrate the satisfactory performance of our proposed model.</description><identifier>ISSN: 1088-467X</identifier><identifier>EISSN: 1571-4128</identifier><identifier>DOI: 10.3233/IDA-216483</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Coders ; Collaboration ; Conditional random fields ; Information retrieval ; Machine learning ; Machine translation ; Mathematical models ; Parameters ; Particle swarm optimization ; Recognition</subject><ispartof>Intelligent data analysis, 2023-01, Vol.27 (1), p.103-120</ispartof><rights>Copyright IOS Press BV 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-5944c6d250107550297217e8d36555a8966c5f24c758e208a2daca07028ec91d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Peng, Qiaojuan</creatorcontrib><creatorcontrib>Luo, Xiong</creatorcontrib><creatorcontrib>Shen, Hailun</creatorcontrib><creatorcontrib>Huang, Ziyang</creatorcontrib><creatorcontrib>Chen, Maojian</creatorcontrib><title>Collaborative optimization with PSO for named entity recognition-based applications</title><title>Intelligent data analysis</title><description>Named entity recognition (NER) as a crucial technology is widely used in many application scenarios, including information extraction, information retrieval, text summarization, and machine translation assisted in AI-based smart communication and networking systems. As people pay more and more attention to NER, it has gradually become an independent and important research field. Currently, most of the NER models need to manually adjust their hyper-parameters, which is not only time-consuming and laborious, but also easy to fall into a local optimal situation. To deal with such problem, this paper proposes a machine learning-guided model to achieve NER, where the hyper-parameters of model are automatically adjusted to improve the computational performance. Specifically, the proposed model is implemented by using bi-directional encoder representation from transformers (BERT) and conditional random field (CRF). Meanwhile, the collaborative computing paradigm is also fused in the model, while utilizing the particle swarm optimization (PSO) to automatically search for the best value of hyper-parameters in a collaborative way. The experimental results demonstrate the satisfactory performance of our proposed model.</description><subject>Coders</subject><subject>Collaboration</subject><subject>Conditional random fields</subject><subject>Information retrieval</subject><subject>Machine learning</subject><subject>Machine translation</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Particle swarm optimization</subject><subject>Recognition</subject><issn>1088-467X</issn><issn>1571-4128</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEQhoMoWKsXf0HAm7A6-dpkj6V-FQoVquAtpNmspmw3a5Iq9de7tZ5mhnnmHXgQuiRwwyhjt7O7SUFJyRU7QiMiJCk4oep46EGpgpfy7RSdpbQGAE6Bj9ByGtrWrEI02X85HPrsN_5nGEKHv33-wM_LBW5CxJ3ZuBq7Lvu8w9HZ8N75PVWsTBoWpu9bb__u0jk6aUyb3MV_HaPXh_uX6VMxXzzOppN5YQlXuRAV57asqQACUgiglaREOlWzUghhVFWWVjSUWymUo6AMrY01IIEqZytSszG6OuT2MXxuXcp6HbaxG15qKiWBfYwcqOsDZWNIKbpG99FvTNxpAnovTQ_S9EEa-wUix14s</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Peng, Qiaojuan</creator><creator>Luo, Xiong</creator><creator>Shen, Hailun</creator><creator>Huang, Ziyang</creator><creator>Chen, Maojian</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230101</creationdate><title>Collaborative optimization with PSO for named entity recognition-based applications</title><author>Peng, Qiaojuan ; Luo, Xiong ; Shen, Hailun ; Huang, Ziyang ; Chen, Maojian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-5944c6d250107550297217e8d36555a8966c5f24c758e208a2daca07028ec91d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Coders</topic><topic>Collaboration</topic><topic>Conditional random fields</topic><topic>Information retrieval</topic><topic>Machine learning</topic><topic>Machine translation</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Particle swarm optimization</topic><topic>Recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Qiaojuan</creatorcontrib><creatorcontrib>Luo, Xiong</creatorcontrib><creatorcontrib>Shen, Hailun</creatorcontrib><creatorcontrib>Huang, Ziyang</creatorcontrib><creatorcontrib>Chen, Maojian</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Intelligent data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Qiaojuan</au><au>Luo, Xiong</au><au>Shen, Hailun</au><au>Huang, Ziyang</au><au>Chen, Maojian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collaborative optimization with PSO for named entity recognition-based applications</atitle><jtitle>Intelligent data analysis</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>27</volume><issue>1</issue><spage>103</spage><epage>120</epage><pages>103-120</pages><issn>1088-467X</issn><eissn>1571-4128</eissn><abstract>Named entity recognition (NER) as a crucial technology is widely used in many application scenarios, including information extraction, information retrieval, text summarization, and machine translation assisted in AI-based smart communication and networking systems. As people pay more and more attention to NER, it has gradually become an independent and important research field. Currently, most of the NER models need to manually adjust their hyper-parameters, which is not only time-consuming and laborious, but also easy to fall into a local optimal situation. To deal with such problem, this paper proposes a machine learning-guided model to achieve NER, where the hyper-parameters of model are automatically adjusted to improve the computational performance. Specifically, the proposed model is implemented by using bi-directional encoder representation from transformers (BERT) and conditional random field (CRF). Meanwhile, the collaborative computing paradigm is also fused in the model, while utilizing the particle swarm optimization (PSO) to automatically search for the best value of hyper-parameters in a collaborative way. The experimental results demonstrate the satisfactory performance of our proposed model.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/IDA-216483</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1088-467X |
ispartof | Intelligent data analysis, 2023-01, Vol.27 (1), p.103-120 |
issn | 1088-467X 1571-4128 |
language | eng |
recordid | cdi_proquest_journals_2771065557 |
source | Business Source Complete |
subjects | Coders Collaboration Conditional random fields Information retrieval Machine learning Machine translation Mathematical models Parameters Particle swarm optimization Recognition |
title | Collaborative optimization with PSO for named entity recognition-based applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T17%3A28%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collaborative%20optimization%20with%20PSO%20for%20named%20entity%20recognition-based%20applications&rft.jtitle=Intelligent%20data%20analysis&rft.au=Peng,%20Qiaojuan&rft.date=2023-01-01&rft.volume=27&rft.issue=1&rft.spage=103&rft.epage=120&rft.pages=103-120&rft.issn=1088-467X&rft.eissn=1571-4128&rft_id=info:doi/10.3233/IDA-216483&rft_dat=%3Cproquest_cross%3E2771065557%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2771065557&rft_id=info:pmid/&rfr_iscdi=true |