Collaborative optimization with PSO for named entity recognition-based applications

Named entity recognition (NER) as a crucial technology is widely used in many application scenarios, including information extraction, information retrieval, text summarization, and machine translation assisted in AI-based smart communication and networking systems. As people pay more and more atten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Intelligent data analysis 2023-01, Vol.27 (1), p.103-120
Hauptverfasser: Peng, Qiaojuan, Luo, Xiong, Shen, Hailun, Huang, Ziyang, Chen, Maojian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 120
container_issue 1
container_start_page 103
container_title Intelligent data analysis
container_volume 27
creator Peng, Qiaojuan
Luo, Xiong
Shen, Hailun
Huang, Ziyang
Chen, Maojian
description Named entity recognition (NER) as a crucial technology is widely used in many application scenarios, including information extraction, information retrieval, text summarization, and machine translation assisted in AI-based smart communication and networking systems. As people pay more and more attention to NER, it has gradually become an independent and important research field. Currently, most of the NER models need to manually adjust their hyper-parameters, which is not only time-consuming and laborious, but also easy to fall into a local optimal situation. To deal with such problem, this paper proposes a machine learning-guided model to achieve NER, where the hyper-parameters of model are automatically adjusted to improve the computational performance. Specifically, the proposed model is implemented by using bi-directional encoder representation from transformers (BERT) and conditional random field (CRF). Meanwhile, the collaborative computing paradigm is also fused in the model, while utilizing the particle swarm optimization (PSO) to automatically search for the best value of hyper-parameters in a collaborative way. The experimental results demonstrate the satisfactory performance of our proposed model.
doi_str_mv 10.3233/IDA-216483
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2771065557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2771065557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-5944c6d250107550297217e8d36555a8966c5f24c758e208a2daca07028ec91d3</originalsourceid><addsrcrecordid>eNotkE1LAzEQhoMoWKsXf0HAm7A6-dpkj6V-FQoVquAtpNmspmw3a5Iq9de7tZ5mhnnmHXgQuiRwwyhjt7O7SUFJyRU7QiMiJCk4oep46EGpgpfy7RSdpbQGAE6Bj9ByGtrWrEI02X85HPrsN_5nGEKHv33-wM_LBW5CxJ3ZuBq7Lvu8w9HZ8N75PVWsTBoWpu9bb__u0jk6aUyb3MV_HaPXh_uX6VMxXzzOppN5YQlXuRAV57asqQACUgiglaREOlWzUghhVFWWVjSUWymUo6AMrY01IIEqZytSszG6OuT2MXxuXcp6HbaxG15qKiWBfYwcqOsDZWNIKbpG99FvTNxpAnovTQ_S9EEa-wUix14s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771065557</pqid></control><display><type>article</type><title>Collaborative optimization with PSO for named entity recognition-based applications</title><source>Business Source Complete</source><creator>Peng, Qiaojuan ; Luo, Xiong ; Shen, Hailun ; Huang, Ziyang ; Chen, Maojian</creator><creatorcontrib>Peng, Qiaojuan ; Luo, Xiong ; Shen, Hailun ; Huang, Ziyang ; Chen, Maojian</creatorcontrib><description>Named entity recognition (NER) as a crucial technology is widely used in many application scenarios, including information extraction, information retrieval, text summarization, and machine translation assisted in AI-based smart communication and networking systems. As people pay more and more attention to NER, it has gradually become an independent and important research field. Currently, most of the NER models need to manually adjust their hyper-parameters, which is not only time-consuming and laborious, but also easy to fall into a local optimal situation. To deal with such problem, this paper proposes a machine learning-guided model to achieve NER, where the hyper-parameters of model are automatically adjusted to improve the computational performance. Specifically, the proposed model is implemented by using bi-directional encoder representation from transformers (BERT) and conditional random field (CRF). Meanwhile, the collaborative computing paradigm is also fused in the model, while utilizing the particle swarm optimization (PSO) to automatically search for the best value of hyper-parameters in a collaborative way. The experimental results demonstrate the satisfactory performance of our proposed model.</description><identifier>ISSN: 1088-467X</identifier><identifier>EISSN: 1571-4128</identifier><identifier>DOI: 10.3233/IDA-216483</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Coders ; Collaboration ; Conditional random fields ; Information retrieval ; Machine learning ; Machine translation ; Mathematical models ; Parameters ; Particle swarm optimization ; Recognition</subject><ispartof>Intelligent data analysis, 2023-01, Vol.27 (1), p.103-120</ispartof><rights>Copyright IOS Press BV 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-5944c6d250107550297217e8d36555a8966c5f24c758e208a2daca07028ec91d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Peng, Qiaojuan</creatorcontrib><creatorcontrib>Luo, Xiong</creatorcontrib><creatorcontrib>Shen, Hailun</creatorcontrib><creatorcontrib>Huang, Ziyang</creatorcontrib><creatorcontrib>Chen, Maojian</creatorcontrib><title>Collaborative optimization with PSO for named entity recognition-based applications</title><title>Intelligent data analysis</title><description>Named entity recognition (NER) as a crucial technology is widely used in many application scenarios, including information extraction, information retrieval, text summarization, and machine translation assisted in AI-based smart communication and networking systems. As people pay more and more attention to NER, it has gradually become an independent and important research field. Currently, most of the NER models need to manually adjust their hyper-parameters, which is not only time-consuming and laborious, but also easy to fall into a local optimal situation. To deal with such problem, this paper proposes a machine learning-guided model to achieve NER, where the hyper-parameters of model are automatically adjusted to improve the computational performance. Specifically, the proposed model is implemented by using bi-directional encoder representation from transformers (BERT) and conditional random field (CRF). Meanwhile, the collaborative computing paradigm is also fused in the model, while utilizing the particle swarm optimization (PSO) to automatically search for the best value of hyper-parameters in a collaborative way. The experimental results demonstrate the satisfactory performance of our proposed model.</description><subject>Coders</subject><subject>Collaboration</subject><subject>Conditional random fields</subject><subject>Information retrieval</subject><subject>Machine learning</subject><subject>Machine translation</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Particle swarm optimization</subject><subject>Recognition</subject><issn>1088-467X</issn><issn>1571-4128</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEQhoMoWKsXf0HAm7A6-dpkj6V-FQoVquAtpNmspmw3a5Iq9de7tZ5mhnnmHXgQuiRwwyhjt7O7SUFJyRU7QiMiJCk4oep46EGpgpfy7RSdpbQGAE6Bj9ByGtrWrEI02X85HPrsN_5nGEKHv33-wM_LBW5CxJ3ZuBq7Lvu8w9HZ8N75PVWsTBoWpu9bb__u0jk6aUyb3MV_HaPXh_uX6VMxXzzOppN5YQlXuRAV57asqQACUgiglaREOlWzUghhVFWWVjSUWymUo6AMrY01IIEqZytSszG6OuT2MXxuXcp6HbaxG15qKiWBfYwcqOsDZWNIKbpG99FvTNxpAnovTQ_S9EEa-wUix14s</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Peng, Qiaojuan</creator><creator>Luo, Xiong</creator><creator>Shen, Hailun</creator><creator>Huang, Ziyang</creator><creator>Chen, Maojian</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230101</creationdate><title>Collaborative optimization with PSO for named entity recognition-based applications</title><author>Peng, Qiaojuan ; Luo, Xiong ; Shen, Hailun ; Huang, Ziyang ; Chen, Maojian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-5944c6d250107550297217e8d36555a8966c5f24c758e208a2daca07028ec91d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Coders</topic><topic>Collaboration</topic><topic>Conditional random fields</topic><topic>Information retrieval</topic><topic>Machine learning</topic><topic>Machine translation</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Particle swarm optimization</topic><topic>Recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Qiaojuan</creatorcontrib><creatorcontrib>Luo, Xiong</creatorcontrib><creatorcontrib>Shen, Hailun</creatorcontrib><creatorcontrib>Huang, Ziyang</creatorcontrib><creatorcontrib>Chen, Maojian</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Intelligent data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Qiaojuan</au><au>Luo, Xiong</au><au>Shen, Hailun</au><au>Huang, Ziyang</au><au>Chen, Maojian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collaborative optimization with PSO for named entity recognition-based applications</atitle><jtitle>Intelligent data analysis</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>27</volume><issue>1</issue><spage>103</spage><epage>120</epage><pages>103-120</pages><issn>1088-467X</issn><eissn>1571-4128</eissn><abstract>Named entity recognition (NER) as a crucial technology is widely used in many application scenarios, including information extraction, information retrieval, text summarization, and machine translation assisted in AI-based smart communication and networking systems. As people pay more and more attention to NER, it has gradually become an independent and important research field. Currently, most of the NER models need to manually adjust their hyper-parameters, which is not only time-consuming and laborious, but also easy to fall into a local optimal situation. To deal with such problem, this paper proposes a machine learning-guided model to achieve NER, where the hyper-parameters of model are automatically adjusted to improve the computational performance. Specifically, the proposed model is implemented by using bi-directional encoder representation from transformers (BERT) and conditional random field (CRF). Meanwhile, the collaborative computing paradigm is also fused in the model, while utilizing the particle swarm optimization (PSO) to automatically search for the best value of hyper-parameters in a collaborative way. The experimental results demonstrate the satisfactory performance of our proposed model.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/IDA-216483</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1088-467X
ispartof Intelligent data analysis, 2023-01, Vol.27 (1), p.103-120
issn 1088-467X
1571-4128
language eng
recordid cdi_proquest_journals_2771065557
source Business Source Complete
subjects Coders
Collaboration
Conditional random fields
Information retrieval
Machine learning
Machine translation
Mathematical models
Parameters
Particle swarm optimization
Recognition
title Collaborative optimization with PSO for named entity recognition-based applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T17%3A28%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collaborative%20optimization%20with%20PSO%20for%20named%20entity%20recognition-based%20applications&rft.jtitle=Intelligent%20data%20analysis&rft.au=Peng,%20Qiaojuan&rft.date=2023-01-01&rft.volume=27&rft.issue=1&rft.spage=103&rft.epage=120&rft.pages=103-120&rft.issn=1088-467X&rft.eissn=1571-4128&rft_id=info:doi/10.3233/IDA-216483&rft_dat=%3Cproquest_cross%3E2771065557%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2771065557&rft_id=info:pmid/&rfr_iscdi=true